scholarly journals Prototype of Slotted Microstrip Patch Antenna for Multiband Application

2018 ◽  
Vol 7 (3.12) ◽  
pp. 1199 ◽  
Author(s):  
Ragini Sharma ◽  
Mahesh Kumar Aghwariya ◽  
Tanvi Agrawal ◽  
Sachin Tyagi

In this paper a slotted microstrip patch antenna has been designed that works for two frequencies 1.42GHz and 2.65GHz. Since a microstrip patch antenna works only on one resonant frequency so converting that into a multiband patch antenna would enhance the bandwidth  and also utilizes the multiple frequencies of operation. This multiband slotted patch antenna is fabricated on FR4 lossy dielectric substrate whose dielectric constant is 4.3 and height is 1.6mm. The length and width of patch are taken as 51.16mm and 39.86mm respectively. we cut out the slots so that the patch antenna works at multiple frequencies. Another advantage of presented design is it reduced the size of antenna actually required for 1.42GHz frequency. Simulation and analysis of slotted patch antenna is done by CST software. Simulation and fabrication results show that the presented antenna design characteristics meet with the standard characteristics of antenna.  

In today’s existence, the technology for communication is continuously growing. The agile achievement in ultra-broadband antennas in wireless communication is increased. A circular monopole microstrip patch antenna has been developed in this research paper. The parameters grandiose by antenna perfmonance are researched. The design is designed to achieve desired gain and bandwidth at 2.4 GHz frequency, with a defected ground system (DGS). This antenna design has been effectuated using FR-4 as the dielectric substrate with 4.3 as dielectric constant. In computer simulation technology (CST) the model monopole circular microstrip patch antenna is simulated and the results needed are achieved. The S11 parameter is obtained as -17.28 decibels which is below -10 decibel. The gain obtained at 2.4 GHz frequency is 1.730 decibel. Application in S band devices, including Wi-Max, WLAN, radio altimeter, cordless phones, wireless headphones etc., were built in this research article.


The propagation of surface waves in the microstrip patch antenna proves to be proves to serious hindrance to radiation mechanism of the antenna. The periodic arrangement of shorting pins is embedded in the dielectric substrate at specific location to enhance the gain by around 4-5dB. The slotted perturbations have been done for achieving tri-band characteristics. The antenna is suitable for operation at three resonant frequency bands centered at 2.2421 GHz, 5.7632GHz and 7.7633GHz, which makes it suitable for WLAN applications.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 151
Author(s):  
Kavitha Thandapani ◽  
Shiyamala Subramani

Dual U Slot Loaded Truncated Microstrip Patch Antenna is designed for wireless applications. The proposed geometry comprised of two inverted U slots in truncated circular patch antenna operation covering 2.24 to 2.72 GHZ frequency bands are obtained. It is found that the slot and truncated is used to improve the bandwidth and return loss respectively. The resonant frequency is found to be 2.5GHZ. The bandwidth of the proposed antenna for lower and upper resonant frequency is found to be 19.2%. The proposed antenna is fed by 50Ω co-axial probe feed and simulated on Rogers RT/duroid5880 substrate.  Rogers RT/duroid 5880 substrate has dielectric constant and loss tangent of 2.2 and 0.0009 respectively. An air gap is used in this proposed design for tuning the desired frequencies and increasing the bandwidth. The antenna shows an acceptable gain of 2.1dB to 5.7dB with unidirectional pattern over the obtained frequency band. 


Radiations improvement in a probe fed rectangular microstrip patch antenna using linear slot etched ground plane is proposed. Conventional MPA is designed using Glass Epoxy FR4 substrate. Substrate has dielectric constant 4.4 and its thickness 1.6 mm, operated at resonant frequency 3.05 GHz. The proposed method is simple and easy to etch on a substrate. This will suppress cross-polarized (XP) radiation field only without disturbing the dominant mode and co-polarized radiations. The concept has been tested using HFSS tool and verified its results experimentally. The experimental results show a good agreement with the simulation results.


Author(s):  
G Naga Shashank

In this article, a multiband microband antenna fed by a microband feeder is proposed, with a total area of 30x24x1.6 mm ^ 3 [1]. The planned antenna is printed on the FR4 epoxy resin substrate with a relative dielectric constant of 4.4 [2]. The multiband characteristics are produced by the differently shaped grooves used in the ground plane. The antenna covers two frequency bands, 24.0 GHz to 24.53 GHz, for K-band applications, and 26.7 GHz to 27.6 GHz, for Ka-band applications [3] [4]. The prototype of the expected antenna is planned and measured in advance. Ansys HFSS software simulation results are consistent with measurement result.


This paper demonstrate the effect of textile material (Jeans) on U.W.B. we all familiar with the information that U.W.B is in between 3.1 to 10.6 GHz, That is assigned by the society of F.C.C (Federal Communication Commission) in 2002.The convoluted design present in this paper, It has designing frequency of 2.4 GHz & we have used IE3D software for simulation. The bandwidth, gain, directivity & efficiency of textile antenna are 109%, 6.69dBi, 6.7dBi, 99.6% respectively and bandwidth, gain, directivity, efficiency of reference antenna are 103%, 7.21dBi, 7.28dBi, 99.5% respectively. Here we are deploying line feed method technique for simulation


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 415
Author(s):  
Haiyue Wang ◽  
Lianwen Deng ◽  
Heng Luo ◽  
Junsa Du ◽  
Daohan Zhou ◽  
...  

The microwave wireless power transfer (MWPT) technology has found a variety of applications in consumer electronics, medical implants and sensor networks. Here, instead of a magnetic resonant coupling wireless power transfer (MRCWPT) system, a novel MWPT system based on a frequency reconfigurable (covering the S-band and C-band) microstrip patch antenna array is proposed for the first time. By switching the bias voltage-dependent capacitance value of the varactor diode between the larger main microstrip patch and the smaller side microstrip patch, the working frequency band of the MWPT system can be switched between the S-band and the C-band. Specifically, the operated frequencies of the antenna array vary continuously within a wide range from 3.41 to 3.96 GHz and 5.7 to 6.3 GHz. For the adjustable range of frequencies, the return loss of the antenna array is less than −15 dB at the resonant frequency. The gain of the frequency reconfigurable antenna array is above 6 dBi at different working frequencies. Simulation results verified by experimental results have shown that power transfer efficiency (PTE) of the MWPT system stays above 20% at different frequencies. Also, when the antenna array works at the resonant frequency of 3.64 GHz, the PTE of the MWPT system is 25%, 20.5%, and 10.3% at the distances of 20 mm, 40 mm, and 80 mm, respectively. The MWPT system can be used to power the receiver at different frequencies, which has great application prospects and market demand opportunities.


Sign in / Sign up

Export Citation Format

Share Document