scholarly journals Characterization of Wavelet Decomposition Strain Signal Using the K-Mean Clustering Method

2018 ◽  
Vol 7 (3.17) ◽  
pp. 158
Author(s):  
A A. Rahim ◽  
C H. Chin ◽  
S Abdullah ◽  
S S. K. Singh ◽  
M Z. Nuawi ◽  
...  

This paper aims to study the characterisation of time-frequency domain to analyse the fatigue strain signal due to weaknesses in time domain and frequency domain approaches. The objectives were to determine the behaviour of strain signal, characterise the fatigue life of strain signal and validate the fatigue life in time-frequency domain. The strain signal was obtained using data acquisition devices and strain gauges on two types of road condition including highway and industrial area. The acquired signals were analysed with time domain, frequency domain and time-frequency domain approaches. In time-frequency domain, the signals were decomposed using 4th Daubechies discrete wavelet transform. To validate the effectiveness of time-frequency approach in characterising vibration fatigue signal, fatigue data was clustered by mapping of the data based on the spectrum energy, root-mean-square and fatigue life obtained. The clustering was performed by comparing the centroid values which both data had five clusters as the optimum data clustering with 0.836 average distance to centroid. From this, the relationship between fatigue life, root-mean-square and spectrum energy can be determined and thus a new fatigue life criterion was developed. 

2018 ◽  
Vol 7 (3.17) ◽  
pp. 104
Author(s):  
Chin Chuin Hao ◽  
Shahrum Abdullah ◽  
Ahmad Kamal Ariffin ◽  
Salvinder Singh Karam Singh

This paper aims to predict the durability of an automobile coil spring by characterising the captured strain data. The load histories collected at coil spring are often presented in time domain but time domain cannot provide sufficient information for fatigue life prediction. The objective of this study was to characterise the strain signal in time domain, frequency domain and time-frequency domain for fatigue life prediction. The signal obtained in time domain was used to predict the fatigue life of the coil spring through Rainflow cycle counting technique and models of strain-life relationships. In frequency domain, fast Fourier transform revealed that the frequency components in the strain signal ranged between 0-5 Hz. The frequencies can be further categorised into two ranges: 0-0.3 Hz and 1-2 Hz. Power spectral density confirmed that the frequencies with high energy content were 0-5 Hz and the total energy content in the signal is 4.0872x103 µɛ2. Short time Fourier transform can identify the local time and frequency properties of the signal but it has a limitation in time-frequency resolutions. Wavelet transform can provide a better time-frequency resolutions and it confirmed that the transients in the time domain had frequency range of 1-2 Hz. In summary, this study revealed different possible approaches of signal processing in fatigue life assessment of automotive components as guidance for the selection of suitable approach based on the type of information needed for the analysis.  


Author(s):  
Zhong Zhang ◽  
Xijia Wu

Abstract A general fatigue life equation is derived by modifying the Tanaka-Mura-Wu dislocation pile-up model for variable strain-amplitude fatigue processes, where the fatigue crack nucleation life is expressed in terms of the root mean square of plastic strain range. Low-cycle fatigue tests were conducted on an austenitic stainless steel. at 400°C and 600°C, the material exhibits continuously cyclic-hardening behaviour. The root mean square of plastic strain ranges is evaluated from the experimental data for each test condition at strain rates ranging from 0.0002/s to 0.02/s. The variable-amplitude Tanaka-Mura-Wu model is found to be in good agreement with the LCF data, which effectively proves Miner’s rule on the stored plastic strain energy basis.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881346 ◽  
Author(s):  
Tabi Fouda Bernard Marie ◽  
Dezhi Han ◽  
Bowen An ◽  
Jingyun Li

To detect and recognize any type of events over the perimeter security system, this article proposes a fiber-optic vibration pattern recognition method based on the combination of time-domain features and time-frequency domain features. The performance parameters (event recognition, event location, and event classification) are very important and describe the validity of this article. The pattern recognition method is precisely based on the empirical mode decomposition of time-frequency entropy and center-of-gravity frequency. It implements the function of identifying and classifying the event (intrusions or non-intrusion) over the perimeter to secure. To achieve this method, the first-level prejudgment is performed according to the time-domain features of the vibration signal, and the second-level prediction is carried out through time-frequency analysis. The time-frequency distribution of the signal is obtained by empirical mode decomposition and Hilbert transform and then the time-frequency entropy and center-of-gravity frequency are used to form the time-frequency domain features, that is, combined with the time-domain features to form feature vectors. Multiple types of probabilistic neural networks are identified to determine whether there are intrusions and the intrusion types. The experimental results demonstrate that the proposed method is effective and reliable in identifying and classifying the type of event.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Changhai Lin ◽  
Sifeng Liu ◽  
Zhigeng Fang ◽  
Yingjie Yang

PurposeThe purpose of this paper is to analyze the spectral characteristics of moving average operator and to propose a novel time-frequency hybrid sequence operator.Design/methodology/approachFirstly, the complex data is converted into frequency domain data by Fourier transform. An appropriate frequency domain operator is constructed to eliminate the impact of disturbance. Then, the inverse Fourier transform transforms the frequency domain data in which the disturbance is removed, into time domain data. Finally, an appropriate moving average operator of N items is selected based on spectral characteristics to eliminate the influence of periodic factors and noise.FindingsThrough the spectrum analysis of the real-time data sensed and recorded by microwave sensors, the spectral characteristics and the ranges of information, noise and shock disturbance factors in the data can be clarified.Practical implicationsThe real-time data analysis results for a drug component monitoring show that the hybrid sequence operator has a good effect on suppressing disturbances, periodic factors and noise implied in the data.Originality/valueFirstly, the spectral analysis of moving average operator and the novel time-frequency hybrid sequence operator were presented in this paper. For complex data, the ideal effect is difficult to achieve by applying the frequency domain operator or time domain operator alone. The more satisfactory results can be obtained by time-frequency hybrid sequence operator.


Author(s):  
Zhong Zhang ◽  
Xijia Wu

Abstract A general fatigue life equation is derived by modifying the Tanaka-Mura-Wu dislocation pile-up model for variable strain-amplitude fatigue processes, where the fatigue crack nucleation life is expressed in terms of the root mean square of plastic strain range. Low-cycle fatigue tests were conducted on an austenitic stainless steel. At 400 ? and 600 ?, the material exhibits continuously cyclic-hardening behaviour. The root mean square of plastic strain ranges is evaluated from the experimental data for each test condition at strain rates ranging from 0.0002/s to 0.02/s. The variable-amplitude Tanaka-Mura-Wu model is found to be in good agreement with the LCF data, which effectively proves Miner's rule on the stored plastic strain energy basis.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hao Chao ◽  
Huilai Zhi ◽  
Liang Dong ◽  
Yongli Liu

Fusing multichannel neurophysiological signals to recognize human emotion states becomes increasingly attractive. The conventional methods ignore the complementarity between time domain characteristics, frequency domain characteristics, and time-frequency characteristics of electroencephalogram (EEG) signals and cannot fully capture the correlation information between different channels. In this paper, an integrated deep learning framework based on improved deep belief networks with glia chains (DBN-GCs) is proposed. In the framework, the member DBN-GCs are employed for extracting intermediate representations of EEG raw features from multiple domains separately, as well as mining interchannel correlation information by glia chains. Then, the higher level features describing time domain characteristics, frequency domain characteristics, and time-frequency characteristics are fused by a discriminative restricted Boltzmann machine (RBM) to implement emotion recognition task. Experiments conducted on the DEAP benchmarking dataset achieve averaged accuracy of 75.92% and 76.83% for arousal and valence states classification, respectively. The results show that the proposed framework outperforms most of the above deep classifiers. Thus, potential of the proposed framework is demonstrated.


Author(s):  
Jie Duan ◽  
Mingfeng Li ◽  
Teik C. Lim ◽  
Ming-Ran Lee ◽  
Ming-Te Cheng ◽  
...  

A multichannel active noise control (ANC) system has been developed for a vehicle application, which employs loudspeakers to reduce the low-frequency road noise. Six accelerometers were attached to the vehicle structure to provide the reference signal for the feedforward control strategy, and two loudspeakers and two microphones were applied to attenuate acoustic noise near the headrest of the driver's seat. To avoid large computational burden caused by the conventional time-domain filtered-x least mean square (FXLMS) algorithm, a time-frequency domain FXLMS (TF-FXLMS) algorithm is proposed. The proposed algorithm calculates the gradient estimate and filtered reference signal in the frequency domain to reduce the computational requirement, while also updates the control signals in the time domain to avoid delay. A comprehensive computational complexity analysis is conducted to demonstrate that the proposed algorithm requires significantly lower computational cost as compared to the conventional FXLMS algorithm.


Author(s):  
Hiroshi Toda ◽  
Zhong Zhang ◽  
Takashi Imamura

The theorems giving the conditions for discrete wavelet transforms (DWTs) to achieve perfect translation invariance (PTI) have already been proven, and based on these theorems, the dual-tree complex DWT and the complex wavelet packet transform, achieving PTI, have already been proposed. However, there is not so much flexibility in their wavelet density. In the frequency domain, the wavelet density is fixed by octave filter banks, and in the time domain, each wavelet is arrayed on a fixed coordinate, and the wavelet packet density in the frequency domain can be only designed by dividing an octave frequency band equally in linear scale, and its density in the time domain is constrained by the division number of an octave frequency band. In this paper, a novel complex DWT is proposed to create variable wavelet density in the frequency and time domains, that is, an octave frequency band can be divided into N filter banks in logarithmic scale, where N is an integer larger than or equal to 3, and in the time domain, a distance between wavelets can be varied in each level, and its transform achieves PTI.


2011 ◽  
Vol 130-134 ◽  
pp. 2696-2700 ◽  
Author(s):  
Lei Zhang ◽  
Guo Qing Huang

The micro Doppler effect of the radar echo signal of helicopter rotor is studied, and the formula of helicopter rotor echo is obtained. Then the received echo signal of helicopter rotor simulated is analyzed in time domain, frequency domain and time-frequency domain respectively, the analysis results show that it is a good method to extract micro Doppler of helicopter rotor echo by time-frequency analysis. According to analysis results, obtained a method to determine parity of blades and velocity of helicopter rotor, these methods can be used to identify helicopter.


Sign in / Sign up

Export Citation Format

Share Document