A Multi-level Evidence-based Cyber Crime Prosecution Information System

2018 ◽  
Vol 7 (3.19) ◽  
pp. 39 ◽  
Author(s):  
Moses Adah Agana ◽  
Ruth Wario

This research work was designed to utilize multi-level cyber crime detection and control system to provide enhanced real-time evidence to cyber crime investigators to aid them in prosecuting cyber criminals. The design was based on a robust system combining user-identity, device identity, geographical location and user activities to provide evidences to uniquely identify a cyber user and detect crimes committed. The system captures the user’s facial image and biometric finger print as mandatory login parameters in addition to username and password before granting access. The system was tested and implemented in a real time cyber security website www.ganamos.org.  The results showed that it is possible to divulge the identity of cyber users and associate their activities with the devices they use, the date, time and location of operation. These can provide real-time evidences to law enforcement agencies to track down and prosecute cyber criminals. 

2021 ◽  
pp. 126-141
Author(s):  
Eva Ignatuschtschenko

This chapter discusses a harm concept that enables a more comprehensive assessment of the consequences of cyber crime. Even though harm resulting from cyber crime is not fundamentally different from harm that is caused by other forms of crime or crime in general, the reach, scope, and volume of crime facilitated by information and communications technology have transformed risks posed to individuals, organizations, and nations, and challenge conventional approaches of crime detection and prevention. Assessments of the impact of cyber crime have been focusing on estimating the cost in monetary value. However, most significant harm might not be experienced as a loss of money, but as a disruption or destabilization of systems that are built on trust. This article advocates for a human-centric approach to cyber security, which emphasizes harm mitigation strategies.


Author(s):  
Paul-Baptiste Rubio ◽  
Ludovic Chamoin ◽  
François Louf

AbstractThis research work deals with the implementation of so-called Dynamic Data-Driven Application Systems (DDDAS) in structural mechanics activities. It aims at designing a real-time numerical feedback loop between a physical system of interest and its numerical simulator, so that (i) the simulation model is dynamically updated from sequential and in situ observations on the system; (ii) the system is appropriately driven and controlled in service using predictions given by the simulator. In order to build such a feedback loop and take various uncertainties into account, a suitable stochastic framework is considered for both data assimilation and control, with the propagation of these uncertainties from model updating up to command synthesis by using a specific and attractive sampling technique. Furthermore, reduced order modeling based on the Proper Generalized Decomposition (PGD) technique is used all along the process in order to reach the real-time constraint. This permits fast multi-query evaluations and predictions, by means of the parametrized physics-based model, in the online phase of the feedback loop. The control of a fusion welding process under various scenarios is considered to illustrate the proposed methodology and to assess the performance of the associated numerical architecture.


2006 ◽  
Vol 3 (3) ◽  
pp. 209-225 ◽  
Author(s):  
K. H. Low ◽  
X. Liu ◽  
H. Yu

This article presents a wearable lower extremity exoskeleton (LEE) developed to enhance the ability of a human’s walking while carrying heavy loads. The ultimate goal of the current research work is to design and control a power assist system that integrates a human’s intellect for feedback and sensory purposes. The exoskeleton system in this work consists of an inner exoskeleton and an outer exoskeleton. The inner exoskeleton measures the movements of the wearer and provides these measurements to the outer exoskeleton, which supports the whole exoskeleton system to walk following the wearer. A special footpad, which is designed and attached to the outer exoskeleton, can measure the zero moment point (ZMP) of the human as well as that of the exoskeleton in time. Using the measured human ZMP as the reference, the exoskeleton’s ZMP is controlled by trunk compensation so that the exoskeleton can walk stably. A simulation platform has first been developed to examine the gait coordination through inner and outer exoskeletons. A commercially available software, xPC Target, together with other toolboxes from MATLAB, has then been used to provide a real-time operating system for controlling the exoskeleton. Real-time locomotion control of the exoskeleton is implemented in the developed environment. Finally, some experiments on different objects showed that the stable walking can be achieved in the real environment.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4941
Author(s):  
Kirti Gupta ◽  
Subham Sahoo ◽  
Bijaya Ketan Panigrahi ◽  
Frede Blaabjerg ◽  
Petar Popovski

The integration of variable distributed generations (DGs) and loads in microgrids (MGs) has made the reliance on communication systems inevitable for information exchange in both control and protection architectures to enhance the overall system reliability, resiliency and sustainability. This communication backbone in turn also exposes MGs to potential malicious cyber attacks. To study these vulnerabilities and impacts of various cyber attacks, testbeds play a crucial role in managing their complexity. This research work presents a detailed study of the development of a real-time co-simulation testbed for inverter-based MGs. It consists of a OP5700 real-time simulator, which is used to emulate both the physical and cyber layer of an AC MG in real time through HYPERSIM software; and SEL-3530 Real-Time Automation Controller (RTAC) hardware configured with ACSELERATOR RTAC SEL-5033 software. A human–machine interface (HMI) is used for local/remote monitoring and control. The creation and management of HMI is carried out in ACSELERATOR Diagram Builder SEL-5035 software. Furthermore, communication protocols such as Modbus, sampled measured values (SMVs), generic object-oriented substation event (GOOSE) and distributed network protocol 3 (DNP3) on an Ethernet-based interface were established, which map the interaction among the corresponding nodes of cyber-physical layers and also synchronizes data transmission between the systems. The testbed not only provides a real-time co-simulation environment for the validation of the control and protection algorithms but also extends to the verification of various detection and mitigation algorithms. Moreover, an attack scenario is also presented to demonstrate the ability of the testbed. Finally, challenges and future research directions are recognized and discussed.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Ibrahim Goni ◽  
Murtala Mohammad

The mobile Cyber Crime detection is challenged by number of mobile devices (internet of things), large and complex data, the size, the velocity, the nature and the complexity of the data and devices has become so high that data mining techniques are no more efficient since they cannot handle Big Data and internet of things. The aim of this research work was to develop a mobile forensics framework for cybercrime detection using machine learning approach. It started when call was detected and this detection is made by machine learning algorithm furthermore intelligent mass media towers and satellite that was proposed in this work has the ability to classified calls whether is a threat or not and send signal directly to Nigerian communication commission (NCC) forensic lab for necessary action. 


Author(s):  
Seong Cheol Kim ◽  
Papia Ray ◽  
S. Surender Reddy

This paper presents an overview of smart grid (SG) technology features such as two-way communication, advanced metering infrastructure (AMI) system, integration of renewable energy, advanced storage techniques, real time operation and control, data management and processing, physical and cyber security, and self-healing, etc. The SG technology allows twoway communications for better reliability, control, efficiency and economics of the power system. With these new SG technologies, consumers have many energy choices, such as use of renewable energy, usage management, flexible rates, electric vehicles (EVs), etc. The requirement of these technologies is the real time operation, and the SG accommodates this realtime operation and control. SG technology allows distributed generation through demand response and energy efficiency technologies to shed the load demand. However, it’s very difficult to adopt these changes to the conventional grids. Utility companies, governments, independent system operators (ISOs) and energy regulatory commissions need to agree on the scope and time frame of these changes.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


1994 ◽  
Vol 33 (01) ◽  
pp. 60-63 ◽  
Author(s):  
E. J. Manders ◽  
D. P. Lindstrom ◽  
B. M. Dawant

Abstract:On-line intelligent monitoring, diagnosis, and control of dynamic systems such as patients in intensive care units necessitates the context-dependent acquisition, processing, analysis, and interpretation of large amounts of possibly noisy and incomplete data. The dynamic nature of the process also requires a continuous evaluation and adaptation of the monitoring strategy to respond to changes both in the monitored patient and in the monitoring equipment. Moreover, real-time constraints may imply data losses, the importance of which has to be minimized. This paper presents a computer architecture designed to accomplish these tasks. Its main components are a model and a data abstraction module. The model provides the system with a monitoring context related to the patient status. The data abstraction module relies on that information to adapt the monitoring strategy and provide the model with the necessary information. This paper focuses on the data abstraction module and its interaction with the model.


Author(s):  
Juveriya Afreen

Abstract-- With increase in complexity of data, security, it is difficult for the individuals to prevent the offence. Thus, by using any automation or software it’s not possible by only using huge fixed algorithms to overcome this. Thus, we need to look for something which is robust and feasible enough. Hence AI plays an epitome role to defense such violations. In this paper we basically look how human reasoning along with AI can be applied to uplift cyber security.


Sign in / Sign up

Export Citation Format

Share Document