scholarly journals The Design of Web Based Car Recommendation System using Hybrid Recommender Algorithm

2018 ◽  
Vol 7 (3.4) ◽  
pp. 192
Author(s):  
Leyo Babu Thomas ◽  
V Vaidhehi

Web based recommendations for any item is mandatory in E-commerce based web sites. This paper is about the design of web based car recommendation system using the hybrid recommender algorithm. The proposed hybrid recommender algorithm is the combination of user-to-user and item-to-item collaborative filtering method to generate the car recommendations. The user model is designed using demographic features, click data and browsing history. Item profile is built using the various attributes of car, 40 brands of car including 224 car types are used in this work. The synthetic dataset of 300 users with 10000 sessions is used to build user model. The proposed algorithm is evaluated with 100 real time users and shows the 83% accuracy in generating recommendations.  


2020 ◽  
Vol 8 (4) ◽  
pp. 367
Author(s):  
Muhammad Arief Budiman ◽  
Gst. Ayu Vida Mastrika Giri

The development of the music industry is currently growing rapidly, millions of music works continue to be issued by various music artists. As for the technologies also follows these developments, examples are mobile phones applications that have music subscription services, namely Spotify, Joox, GrooveShark, and others. Application-based services are increasingly in demand by users for streaming music, free or paid. In this paper, a music recommendation system is proposed, which the system itself can recommend songs based on the similarity of the artist that the user likes or has heard. This research uses Collaborative Filtering method with Cosine Similarity and K-Nearest Neighbor algorithm. From this research, a system that can recommend songs based on artists who are related to one another is generated.



2019 ◽  
Vol 13 ◽  
pp. 267-271
Author(s):  
Jacek Bielecki ◽  
Oskar Ceglarski ◽  
Maria Skublewska-Paszkowska

Recommendation systems are class of information filter applications whose main goal is to provide personalized recommendations. The main goal of the research was to compare two ways of creating personalized recommendations. The recommendation system was built on the basis of a content-based cognitive filtering method and on the basis of a collaborative filtering method based on user ratings. The conclusions of the research show the advantages and disadvantages of both methods.



2020 ◽  
Vol 9 (1) ◽  
pp. 1548-1553

Music recommendation systems are playing a vital role in suggesting music to the users from huge volumes of digital libraries available. Collaborative filtering (CF) is a one of the well known method used in recommendation systems. CF is either user centric or item centric. The former is known as user-based CF and later is known as item-based CF. This paper proposes an enhancement to item-based collaborative filtering method by considering correlation among items. Lift and Pearson Correlation coefficient are used to find the correlation among items. Song correlation matrix is constructed by using correlation measures. Proposed method is evaluated on the benchmark dataset and results obtained are compared with basic item-based CF



India is mainly based on farming. Agriculture is the main source of economy in India, but the farmers are suffering with many problems such as lack of crops yield, lack of water, soil fertility etc. To address those issues this recommendation system is proposed, and it significantly influences the crops yields. The need for the accessible data on the accomplishment for getting crops in good yields are investigated. To accomplish that, real-time data are collected from the farmers from different places of Karnataka. In this paper linear regression and collaborative filtering are used, and results are compared to draw an inference for more accurate recommendation system.



Author(s):  
Hongbin Xia ◽  
Yang Luo ◽  
Yuan Liu

AbstractThe collaborative filtering method is widely used in the traditional recommendation system. The collaborative filtering method based on matrix factorization treats the user’s preference for the item as a linear combination of the user and the item latent vectors, and cannot learn a deeper feature representation. In addition, the cold start and data sparsity remain major problems for collaborative filtering. To tackle these problems, some scholars have proposed to use deep neural network to extract text information, but did not consider the impact of long-distance dependent information and key information on their models. In this paper, we propose a neural collaborative filtering recommender method that integrates user and item auxiliary information. This method fully integrates user-item rating information, user assistance information and item text assistance information for feature extraction. First, Stacked Denoising Auto Encoder is used to extract user features, and Gated Recurrent Unit with auxiliary information is used to extract items’ latent vectors, respectively. The attention mechanism is used to learn key information when extracting text features. Second, the latent vectors learned by deep learning techniques are used in multi-layer nonlinear networks to learn more abstract and deeper feature representations to predict user preferences. According to the verification results on the MovieLens data set, the proposed model outperforms other traditional approaches and deep learning models making it state of the art.



Author(s):  
Zk Abdurahman Baizal ◽  
Nur Rahmawati

<p>Conversational recommender system is system that provides dialogue as user guide to obtain information from the user, in order to obtain preference for products needed. This research implements conversational recommender system with knowledge-based in the smartphone domain with an explanation facility. The recommended products are obtained based on the functional requirements of the user. Therefore, this study use ontology model as a knowledge to be more flexible in finding products that is suitable with the functional requirements of the user that is by tracing a series of semantic based on relationships in order to obtain the user model. By exploiting the relationship between instances of user models, the explanation facility generated can be more natural. Our filtering method uses semantic reasoning with inference method to avoid overspecialization. The evaluation show that the performance of our recommender system with explanation facilities is more efficient than the recommendation system without explanation facility, that can be seen from the number of iterations. We also notice that our system has accuracy of 84%.</p>



2014 ◽  
Vol 490-491 ◽  
pp. 1493-1496
Author(s):  
Huan Gao ◽  
Xi Tian ◽  
Xiang Ling Fu

With the mobile Internet developing in China, the problem of information overload has been brought to us. The traditional personalized recommendation cannot meet the needs of the mobile Internet. In this paper, the recommendation algorithm is mainly based on the collaborative filtering, but the new factors are introduced into the recommendation system. The new system takes the user's location and friends recommendation into the personalized recommendation system so that the recommendation system can meet the mobile Internet requirements. Besides, this paper also puts forward the concept of moving business circle for information filtering, which realizes the precise and real-time personalized recommendations. This paper also proves the recommendation effects through collecting and analyzing the data, which comes from the website of dianping.com.



2020 ◽  
Vol 19 (02) ◽  
pp. 385-412 ◽  
Author(s):  
P. Shanmuga Sundari ◽  
M. Subaji

Most of the traditional recommendation systems are based on user ratings. Here, users provide the ratings towards the product after use or experiencing it. Accordingly, the user item transactional database is constructed for recommendation. The rating based collaborative filtering method is well known method for recommendation system. This system leads to data sparsity problem as the user is unaware of other similar items. Web cataloguing service such as tags plays a significant role to analyse the user’s perception towards a particular product. Some system use tags as additional resource to reduce the data sparsity issue. But these systems require lot of specific details related to the tags. Existing system either focuses on ratings or tags based recommendation to enhance the accuracy. So these systems suffer from data sparsity and efficiency problem that leads to ineffective recommendations accuracy. To address the above said issues, this paper proposed hybrid recommendation system (Iter_ALS Iterative Alternate Least Square) to enhance the recommendation accuracy by integrating rating and emotion tags. The rating score reveals overall perception of the item and emotion tags reflects user’s feelings. In the absence of emotional tags, scores found in rating is assumed as positive or negative emotional tag score. Lexicon based semantic analysis on emotion tags value is adopted to represent the exclusive value of tag. Unified value is represented into Iter_ALS model to reduce the sparsity problem. In addition, this method handles opinion bias between ratings and tags. Experiments were tested and verified using a benchmark project of MovieLens dataset. Initially this model was tested with different sparsity levels varied between 0%-100 percent and the results obtained from the experiments shows the proposed method outperforms with baseline methods. Further tests were conducted to authenticate how it handles opinion bias by users before recommending the item. The proposed method is more capable to be adopted in many real world applications



Author(s):  
Yiman Zhang

In the era of big data, the amount of Internet data is growing explosively. How to quickly obtain valuable information from massive data has become a challenging task. To effectively solve the problems faced by recommendation technology, such as data sparsity, scalability, and real-time recommendation, a personalized recommendation algorithm for e-commerce based on Hadoop is designed aiming at the problems in collaborative filtering recommendation algorithm. Hadoop cloud computing platform has powerful computing and storage capabilities, which are used to improve the collaborative filtering recommendation algorithm based on project, and establish a comprehensive evaluation system. The effectiveness of the proposed personalized recommendation algorithm is further verified through the analysis and comparison with some traditional collaborative filtering algorithms. The experimental results show that the e-commerce system based on cloud computing technology effectively improves the support of various recommendation algorithms in the system environment; the algorithm has good scalability and recommendation efficiency in the distributed cluster, and the recommendation accuracy is also improved, which can improve the sparsity, scalability and real-time problems in e-commerce personalized recommendation. This study greatly improves the recommendation performance of e-commerce, effectively solves the shortcomings of the current recommendation algorithm, and further promotes the personalized development of e-commerce.



Sign in / Sign up

Export Citation Format

Share Document