scholarly journals The Effect of Compression Ratio on Pollutant Emission of a Diesel Engine Fuelled with Nano Diesel

2018 ◽  
Vol 7 (4.19) ◽  
pp. 828
Author(s):  
Abdulkhodor Kathum Nassir ◽  
Haroun A. K. Shahad

This studying aims to examine the impact of compression ratio (CR) on the pollutants of a compression ignition engine (CIE) fuelled with Nano-diesel. Nano-particles of Al2O3 and TiO2 are used as additives to diesel fuel with particle size less 45 nm. The impact is tested for 25, 50, 100 and 150 ppm doses. Tests are performed at different loads and a speed of 1500 rpm. Three CR are used namely13.5, 15.5 and 17.5. Results illustrated the affects of CR on the emissions of CO, CO2, NOx, smoke opacity and UHC. Results showed  that CO concentration rises with increasing of CR for Al2O3. It is increased by 2.5, 4.9 and 15.3% for the three ratios at 100ppm and 25% load while at full load there is no much effect as a result of high combustion temperature. Negligible effect is noticed for TiO2.The concentration of CO2rises with increasing CR at all dozes but it is very clear with 150ppm and 25% load3.7, 4.1 and 4.8% for Al2O3. The effect of  TiO2 is higher than that of Al2O3. The results also, show that NOx concentration is increased and becomes 604, 651 and 698ppm for 13.5, 15.5 and 17.5 respectively for Al2O3 at 25ppm and 25% load. The impact of Al2O3 is more noticeable than that of TiO2.The smoke opacity is slightly affected by CR for Al2O3 and  TiO2 at all doses and 25% load. UHC decreases slightly from 79, 75 and 71 ppm for CR of 13.5, 15.5 and 17.5 respectively for Al2O3 at 25ppm and 25% load. UHC decreases from 68, 65 and 61 ppm for CR13.5, 15.5 and 17 respectively for TiO2 at 25ppm and 25% load.  

Author(s):  
Marwan Effendy ◽  
Arif Surono ◽  
Eqwar Saputra ◽  
Nurmuntaha Agung Nugraha

Author(s):  
Gong Chen

It is always desirable for a heavy-duty compression-ignition engine, such as a diesel engine, to possess a capability of using alternate liquid fuels without significant hardware modification to the engine baseline. Because fuel properties vary between various types of liquid fuels, it is important to understand the impact and effects of the fuel properties on engine operating and output parameters. This paper intends and attempts to achieve that understanding and to predict the qualitative effects by studying analytically and qualitatively how a heavy-duty compression-ignition engine would respond to the variation of fuel properties. The fuel properties considered in this paper mainly include the fuel density, compressibility, heating value, viscosity, cetane number, and distillation temperature range. The qualitative direct and end effects of the fuel properties on engine bulk fuel injection, in-cylinder combustion, and outputs are analyzed and predicted. Understanding these effects can be useful in analyzing and designing a compression-ignition engine for using alternate liquid fuels.


Author(s):  
Gong Chen

Peak cylinder pressure of a compression-ignition engine can be affected by engine inlet air condition such as its temperature and pressure. The variation of peak cylinder pressure due to varying inlet air temperature and pressure is analytically studied in this paper. An analytical model is developed and thus the variations of peak cylinder pressure can be predicted along with inlet air temperature or pressure varying. It is indicated that cylinder compression ratio (CR) and intake air boost ratio (pm0/pi0) play significant roles in affecting the variation of peak cylinder pressure over inlet air temperature and pressure, and the pressure variation is proportional to CRk and pm0/pi0. The predicted results are compared to those from engine experiments, and show a close agreement. The prediction also includes the investigation of the variation in peak cylinder pressure due to varying the cylinder TDC volume. Results from the analytical studies are presented and show that the change in pmax versus a change in the volume is also affected by compression ratio. This indicates that for a certain change in the clearance volume, a higher compression-ratio configuration would produce a greater change in pmax than a lower compression-ratio would with the rest of the engine design parameters remaining unchanged.


Sign in / Sign up

Export Citation Format

Share Document