scholarly journals Behaviour of Basalt Fiber Reinforced Concrete Filled Mild Steel Tube

2018 ◽  
Vol 7 (4.2) ◽  
pp. 15
Author(s):  
Arunraj A ◽  
Ashwin Kumar J ◽  
Ajith J

The present study is an attempt to understand the behavior of concrete filled steel tubular column under uniaxial load. A concrete-filled steel tubular (CFST) column is formed by filling a steel tube with concrete. It is well known that concrete- filled steel tubular (CFST) columns are currently being used in the construction of buildings, due to their excellent static and earthquake-resistant properties, such as high strength, high ductility, large energy absorption capacity, bending stiffness etc. The external strengthening of using basalt fiber reinforced concrete material is emerging as a new trend in enhancing the structural performance concrete filled steel tubular members to counteract the drawbacks of the past rehabilitation work. In this project we are going to study about strength of the steel and concrete by doing compression strength, flexural strength, push out and uniaxial compression test. The tests are carried out with the help of universal testing machine. The readings are recorded and graphs are plotted.  

2021 ◽  
Vol 11 (19) ◽  
pp. 8850
Author(s):  
Leonid Dvorkin ◽  
Oleh Bordiuzhenko ◽  
Biruk Hailu Tekle ◽  
Yuri Ribakov

Combining different fiber types may improve the mechanical properties of fiber reinforced concrete. The present study is focused on investigating hybrid fiber reinforced concrete (HFRC) with steel and basalt fiber. Mechanical properties of fiber reinforced fine-grained concrete are investigated. The results demonstrate that using optimal steel and basalt fiber reinforcement ratios avoids concrete mixtures’ segregation and improves their homogeneity. Concrete with hybrid steel and basalt fiber reinforcement has higher strength. Effective methodology for proper design of HFRC compositions was proposed. It is based on the mathematical experiments planning method. The proposed method enables optimal mix proportioning of high-strength fine-grained concrete with hybrid steel and basalt fiber reinforcement.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


2008 ◽  
Vol 64 (3) ◽  
pp. 435-448
Author(s):  
Tetsuo KAWAGUCHI ◽  
Makoto KATAGIRI ◽  
Kazuyoshi SHIRAI ◽  
Junichiro NIWA

2012 ◽  
Vol 18 (31) ◽  
pp. 222-229
Author(s):  
Chunyakom Sivaleepunth ◽  
Toshimichi Ichinomiya ◽  
Shinichi Yamanobe ◽  
Tetsuya Kono ◽  
Naoki Sogabe ◽  
...  

Author(s):  
Vera V. Galishnikova ◽  
Alireza Heidari ◽  
Paschal C. Chiadighikaobi ◽  
Adegoke Adedapo Muritala ◽  
Dafe Aniekan Emiri

Relevance. The load on a reinforced concrete slab with high strength lightweight aggregate concrete leads to increased brittleness and contributes to large deflection or flexure of slabs. The addition of fibers to the concrete mix can improve its mechanical properties including flexure, deformation, toughness, ductility, and cracks. The aims of this work are to investigate the flexure and ductility of lightweight expanded clay concrete slabs reinforced with basalt fiber polymers, and to check the effects of basalt fiber mesh on the ductility and flexure. Methods. The ductility and flexural/deflection tests were done on nine engineered cementitious composite (expanded clay concrete) slabs with dimensions length 1500 mm, width 500 mm, thickness 65 mm. These nine slabs are divided in three reinforcement methods types: three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm (first slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed chopped basalt fiber plus basalt fiber polymer (mesh) of cells 2525 mm (second slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed basalt fiber of length 20 mm, diameter 15 m (third slab type). The results obtained showed physical deflection of the three types of slab with cracks. The maximum flexural load for first slab type is 16.2 KN with 8,075 mm deflection, second slab type is 24.7 KN with 17,26 mm deflection and third slab type 3 is 32 KN with 15,29 mm deflection. The ductility of the concrete slab improved with the addition of dispersed chopped basalt fiber and basalt mesh.


2020 ◽  
Vol 198 ◽  
pp. 01010
Author(s):  
Duo Wu

Concrete structure will be corroded under acid rain scouring and soaking for a long time, which has a great influence on its durability life. In order to further study the damage characteristics of fiber reinforced concrete under acid rain erosion, the formation mechanism of acid rain and its influence on the corrosion and deterioration of concrete and fiber materials were analyzed in this paper. Taking basalt fiber concrete as an example, the characteristics such as porosity, compressive strength and mechanical indexes were studied and analyzed. Moreover, the reasons for the optimal fiber content was briefly analyzed. The results show that the inner structure of basalt concrete mixed with 0.1% fiber was the most stable and the corrosion resistance was the most satisfying.This conclusion has certain reference significance for the corrosion damage research of fiber reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document