scholarly journals Application of Synthetic Filters from Polypropylene in Diesel Locomotive Oil Systems to Improve the Efficiency of Cleaning Engine Oil

2018 ◽  
Vol 7 (4.3) ◽  
pp. 162 ◽  
Author(s):  
Oleksandr Babanin ◽  
Oleksandr Butskiy ◽  
Oleksandr Kovalenko ◽  
Maksym Maksimov

The questions of application of synthetic materials as filtering, in oil systems of internal combustion engines are considered in the article. In existing oil systems, diesel engines of internal combustion use filtering elements that provide limited protection of oil systems from particles of potentially dangerous dimensions and, therefore, wear. They are not designed to work for a long service life with the higher level of oil purity required at the present time. The urgency of these issues is caused by the need to improve the quality of engine oil cleaning and, as a consequence, to increase the reliability of the engine. The use of filter elements made of porous, fibrous polypropylene is proposed. Which, according to the results of the experiment, will allow to extend the service life of the filter elements and improve the quality of their operation. 

Author(s):  
Gennadiy Petrovich Kicha ◽  
Liudmila Anatolievna Semeniuk

The article gives analysis of the advantages and disadvantages of cleaning engine oil in internal combustion engines by filtration and centrifugation. The principles of increasing the efficiency of fine oil purification by combining these methods are formulated. The scheme of a perspective system for fine cleaning of engine oil is presented, which most fully realizes the advantages of full-flow filtration and centrifugation for a two-circuit lubrication system of forced internal combustion engines. The operating conditions of diesel engines are shown, under which the advantages of filtration and centrifugation can be realized to the full. The indices for the specific productivity index and capacity of the centrifugal cleaner are calculated, contributing to the attainment of the minimum wear rate of the engine parts and the maximum service life of the filter elements. Prospects for the application of a full-flow fine engine oil purification system in forced engines with a sequential connection of purification units with different principles of separation of complex heterogeneous polydisperse systems, which include the products of contamination of lubrication systems, are outlined. Particularly effective is the use of the developed combined fine-cleaning system in marine diesel engines with increased rotational speed, operating on screw characteristics. The results of motor tests in the ship's trunk boosted diesels of the new combined lubrication oil fine cleaning system are reported. The results of operational tests in the marine diesel engine ДД108 (8ЧСПН 18/22) of a combined engine oil purification system have been analyzed, which combine the advantages of a full-flow filter and a centrifuge with a discharge head connected in series. The parameters of efficient regular and experienced combined engine oil cleaning system are compared with the effect on aging, wear and varnish and lacquer formation of a diesel engine.


Author(s):  
S.V. Timokhin ◽  
◽  
Yu.V. Rodionov ◽  
I.I. Kurbakov ◽  
◽  
...  

А significant factor affecting the reliability of the internal combustion engine and its technical and Economic indicators is the efficiency of the lubrication system. When the standard oil supply is applied, semiliquid friction occurs between the contacting parts, in which the parts are not completely separated by a layer of oil. However, with this friction, the required durability of components and parts with heat removal is guaranteed. The performance of the engine lubrication system is determined by the state of its elements (coarse and fine filters, oil radiator and pump, valves), as well as the quality of oil, its level in the internal combustion engine crankcase and temperature. In domestic internal combustion engines, the minimum oil level in the crankcase is controlled, but in operation there are situations when the oil level exceeds its maximum permissible value. This situation occurs when coolant or fuel enters the lubrication system. Coolant can get into the oil if the cylinder head gaskets, sleeve o-rings, or cracks in the cylinder head and block are broken. Top-Livo can enter the oil through worn and damaged parts of the fuel equipment (gas pump diaphragm, fuel pump plunger pairs, etc.). These liquids sharply degrade the quality of the oil and increase the wear of internal combustion engine parts, and the standard singlelevel indicator will not give the driver operational information about the malfunction. In connection with the above, the purpose of this work is to improve the technology for monitoring the technical condition of the internal combustion engine lubrication system on the example of the d-245 diesel engine and its modifications, which are widely used in GAZ (GAZ-3309), ZIL (ZIL-5301), MAZ (MAZ Zubrenok), PAZ buses (PAZ-3205), MTZ tractors (MTZ — 100, 892, 1020), agricultural and construction equipment.by developing and implementing a built — in device for monitoring the minimum and maximum oil levels in the crankcase, as well as its temperature. The scientific novelty of the work is due to the use of new circuit and technical solutions, as well as the original algorithm of the sensor operation developed by the authors, based on the use of switching laws of reed switches with normally closed and normally open contacts, the operation of which is spaced over time and controlled oil levels. Block diagram of the proposed device comprises a multifunction sensor level and oil temperature, including sensors of the mi-minimum and increased levels of engine oil in the crankcase of the engine and its temperature, the operation mode switch signal cooling temperature-edusei fluid and engine oil, the first and second voltage сomparators, indicator lights, buzzer, switch power supply, voltage regulator and regular temperature sensor coolant. The use of the developed device significantly increases the reliability and convenience of monitoring one of the most important indicators of internal combustion engines-the oil level in the crankcase, which will avoid significant engine damage. As a result of further research, it is planned to develop the device design, conduct laboratory studies of the developed multifunctional sensor in order to determine the dependence of its resistance on the temperature at the normal level of engine oil in the measuring flask, as well as determine the actual values of the developed sensor response heights at the lower and upper levels.


2021 ◽  
Vol 5 (2(61)) ◽  
pp. 26-32
Author(s):  
Sergii Sagin ◽  
Volodymyr Madey ◽  
Tymur Stoliaryk

The object of research is marine diesel engine oils, which provide lubrication, cooling and separation of friction surfaces. The subject of the research is the process of ensuring minimum mechanical losses in marine diesel engines. A problematic point in ensuring the lubrication of the cylinder-piston group and motion bearings is the lack of analytical and experimental studies that establish the relationship between the structural characteristics of engine oils and mechanical losses arising in marine internal combustion engines. The degree of orientational ordering of molecules and the thickness of the boundary lubricating layer are considered as the structural characteristics of engine oils. The determination of these values was carried out using the optical method based on the anisotropy of the light absorption coefficient by the boundary lubricant layer and the isotropic volume of the liquid (engine oil). The assessment of the level of mechanical losses arising in marine diesel engines was carried out according to an indirect indicator – the overshoot of the rotational speed and the time to reach the steady state of operation in the event of a change in load. It has been experimentally established that for engine oils used in marine internal combustion engines, the thickness of the boundary layer can be 15–17.5 µm. Motor oils, which are characterized by a higher ordering of molecules and a thickness of the boundary lubricant layer, ensure the flow of transient dynamic processes with less overshoot and a shorter transient time. This ensures the level of minimal mechanical losses occurring in marine diesel engines. The technology for determining the structural characteristics of engine oils can be used for any type and grade of oil (mineral or synthetic; high or low viscosity; used in both circulating and cylinder lubrication systems). The method of indirect assessment of mechanical losses of marine diesel engines can be used for any types of internal combustion engines of ships of sea and river transport (low-, medium- and high-speed; as well as performing the functions of both main and auxiliary engines).


2021 ◽  
pp. 146808742110129
Author(s):  
Hidemi Ogihara ◽  
Takumi Iwata ◽  
Yuji Mihara ◽  
Makoto Kano

Internal combustion engines have been improved markedly in recent years through efforts to conserve resources, reduce emissions and improve fuel efficiency. In this regard, the authors have been working to reduce friction and improve the seizure properties of the crankshaft main journal and main bearing. These mechanical components of internal combustion engines incur large friction losses. In order to reduce friction, journals have been coated with a diamond-like carbon (DLC) coating, which has been reported to reduce friction in the fluid lubrication regime in recent years. Another current issue of journals and bearings is the need to improve seizure resistance. Therefore, these properties were evaluated for material combinations of aluminium alloy bearings and DLC-coated journals, which have low affinity. The results revealed that friction was reduced under a fluid lubrication regime and seizure resistance was improved under a mixed lubrication regime.


2020 ◽  
pp. 10-16
Author(s):  
S.A. Belov ◽  
I.V. Busin

The article reviews four existing technologies for replacing engine oil and a method for determining its suitability for improving economic efficiency. It is established that the oil is replaced according to the need in accordance with the defect indicators. This technology of oil condition is characterized by a more complete use of its resource. The frequency of replacement is determined by the indicators of condition, which is monitored by special sensors built into the engine lubrication system. However, the difficulty of using this technology is due to the lack of high-quality devices for monitoring the state of running engine oil in the engine.


2019 ◽  
Vol 287 ◽  
pp. 06005
Author(s):  
Aliaksandar Ilyushchanka ◽  
Vyacheslav Kaptsevich ◽  
Valeria Korneeva ◽  
Ruslan Kusin ◽  
Igar Zakreuski ◽  
...  

The article discusses the use of powder filter materials (PFM) for cleaning engine oil when running-in internal combustion engines (ICE) of agricultural vehicles at motor repair enterprises. The results of comparative tests of powder, paper and net filter elements (FE) are presented. The design of the equipment for cleaning engine oil during and after run-in the engine is proposed.


2005 ◽  
Vol 127 (1) ◽  
pp. 206-212
Author(s):  
T. Icoz ◽  
Z. Dursunkaya

Blowback of engine oil suspended in combustion gases, when the gas flows from the piston second land back into the combustion chamber, is believed to contribute to oil consumption and hydrocarbon emissions in internal combustion engines. Oil accumulation in the region between top and second compression rings is a factor that influences this phenomenon. The effects of individual parameters, such as oil film thickness and viscosity, however, have still not been understood. The present study was aimed at constructing an experimental setup to study the effect of oil film thickness on oil accumulation in the second land of internal combustion engines. Due to the inherent difficulties of experimentation on production engines, a modeled piston-cylinder assembly was constructed. Total oil accumulation in the modeled second land after a single piston stroke was measured and compared to oil consumption in operating engines.


Author(s):  
G.P. Kicha ◽  
A.V. Nadezkin ◽  
S.P. Boiko

Обоснована актуальность исследований рабочих процессов самоочищающегося фильтра, предназначенного для очистки моторного масла в двигателях внутреннего сгорания. Приведена методика расчета параметров регенерации автоматизированных фильтров, сформированных на базе модулей СРФ-60 и СРФД-120, позволяющая осуществлять выбор гидродинамического режима и времени обратной промывки фильтрующих элементов с учетом условий функционирования маслоочистителей. Выделено влияние на эффективность регенерации фильтровального процесса, идентифицированного удельной интенсивностью удаления дисперсной фазы из масла, гидродинамики (числа Рейнольдса) и относительного времени обратной промывки, адгезионных свойств отложений, особенностей конструкции фильтра, дисперсности загрязнений. Представлены доказательства адекватности расчетно-экспериментальных зависимостей, полученных по результатам лабораторных испытаний модели фильтра, и соответствия их данным эксплуатационных натурных испытаний самоочищающихся фильтров на судах. Показана возможность расчета и корректировки срока автономной работы самоочищающегося фильтра в смазочных системах судовых дизелей с учетом форсирования дизеля, качества применяемых горюче-смазочных материалов, интенсивности старения масла, срабатывания входящих в него присадок и уровня загрязнения крупнозернистыми механическими примесями. Дано заключение, что комбинированная очистка масла в двигателях внутреннего сгорания с использованием байпасной схемы сепарирования и центрифугирования облегчает функционирование полнопоточно подключаемых в систему смазки автоматизированных фильтров и позволяет увеличить срок автономной работы их до 5 тыс. ч. При этом надежная и эффективная работа очистителей возможна в самых жестких условиях загрязнения и старения масла.The relevance of research on the working processes of a self-cleaning filter intended for cleaning engine oil in internal combustion engines is substantiated. A methodology for calculating the regeneration parameters of automated filters generated by the SRF-60 and SRFD-120 modules is presented. The influence on the efficiency of the regeneration of the filtering process, which is identified by the specific intensity of the removal of the dispersed phase from the oil, the hydrodynamics (Reynolds number) and the relative backwash time, the adhesive properties of the sediments, the design features of the filter, and the dispersion of contaminants are highlighted. The evidence of the adequacy of the calculated experimental dependencies obtained from laboratory tests of the filter model and their compliance with the data of field tests of self-cleaning filters on ships is presented. The possibility of calculating and adjusting the autonomous work of the self-cleaning filter in the lubrication systems of marine diesel engines is shown taking into account the forcing of the diesel engine, the quality of the fuels and lubricants used, the aging rate of the oil, the operation of its additives and the level of contamination with coarse-grained mechanical admixture. It is concluded that the combined cleaning of oil in internal combustion engines using a bypass separation and centrifugation scheme facilitates the functioning of fully automated filters in the lubrication system and allows them to increase their battery life up to five thousand hours. Reliable and efficient operation of the purifiers is possible in the harshest conditions of oil pollution and aging.


Sign in / Sign up

Export Citation Format

Share Document