scholarly journals Application of powder filter materials in run-in of engines

2019 ◽  
Vol 287 ◽  
pp. 06005
Author(s):  
Aliaksandar Ilyushchanka ◽  
Vyacheslav Kaptsevich ◽  
Valeria Korneeva ◽  
Ruslan Kusin ◽  
Igar Zakreuski ◽  
...  

The article discusses the use of powder filter materials (PFM) for cleaning engine oil when running-in internal combustion engines (ICE) of agricultural vehicles at motor repair enterprises. The results of comparative tests of powder, paper and net filter elements (FE) are presented. The design of the equipment for cleaning engine oil during and after run-in the engine is proposed.

2021 ◽  
pp. 146808742110129
Author(s):  
Hidemi Ogihara ◽  
Takumi Iwata ◽  
Yuji Mihara ◽  
Makoto Kano

Internal combustion engines have been improved markedly in recent years through efforts to conserve resources, reduce emissions and improve fuel efficiency. In this regard, the authors have been working to reduce friction and improve the seizure properties of the crankshaft main journal and main bearing. These mechanical components of internal combustion engines incur large friction losses. In order to reduce friction, journals have been coated with a diamond-like carbon (DLC) coating, which has been reported to reduce friction in the fluid lubrication regime in recent years. Another current issue of journals and bearings is the need to improve seizure resistance. Therefore, these properties were evaluated for material combinations of aluminium alloy bearings and DLC-coated journals, which have low affinity. The results revealed that friction was reduced under a fluid lubrication regime and seizure resistance was improved under a mixed lubrication regime.


2020 ◽  
pp. 10-16
Author(s):  
S.A. Belov ◽  
I.V. Busin

The article reviews four existing technologies for replacing engine oil and a method for determining its suitability for improving economic efficiency. It is established that the oil is replaced according to the need in accordance with the defect indicators. This technology of oil condition is characterized by a more complete use of its resource. The frequency of replacement is determined by the indicators of condition, which is monitored by special sensors built into the engine lubrication system. However, the difficulty of using this technology is due to the lack of high-quality devices for monitoring the state of running engine oil in the engine.


2005 ◽  
Vol 127 (1) ◽  
pp. 206-212
Author(s):  
T. Icoz ◽  
Z. Dursunkaya

Blowback of engine oil suspended in combustion gases, when the gas flows from the piston second land back into the combustion chamber, is believed to contribute to oil consumption and hydrocarbon emissions in internal combustion engines. Oil accumulation in the region between top and second compression rings is a factor that influences this phenomenon. The effects of individual parameters, such as oil film thickness and viscosity, however, have still not been understood. The present study was aimed at constructing an experimental setup to study the effect of oil film thickness on oil accumulation in the second land of internal combustion engines. Due to the inherent difficulties of experimentation on production engines, a modeled piston-cylinder assembly was constructed. Total oil accumulation in the modeled second land after a single piston stroke was measured and compared to oil consumption in operating engines.


Author(s):  
G.P. Kicha ◽  
A.V. Nadezkin ◽  
S.P. Boiko

Обоснована актуальность исследований рабочих процессов самоочищающегося фильтра, предназначенного для очистки моторного масла в двигателях внутреннего сгорания. Приведена методика расчета параметров регенерации автоматизированных фильтров, сформированных на базе модулей СРФ-60 и СРФД-120, позволяющая осуществлять выбор гидродинамического режима и времени обратной промывки фильтрующих элементов с учетом условий функционирования маслоочистителей. Выделено влияние на эффективность регенерации фильтровального процесса, идентифицированного удельной интенсивностью удаления дисперсной фазы из масла, гидродинамики (числа Рейнольдса) и относительного времени обратной промывки, адгезионных свойств отложений, особенностей конструкции фильтра, дисперсности загрязнений. Представлены доказательства адекватности расчетно-экспериментальных зависимостей, полученных по результатам лабораторных испытаний модели фильтра, и соответствия их данным эксплуатационных натурных испытаний самоочищающихся фильтров на судах. Показана возможность расчета и корректировки срока автономной работы самоочищающегося фильтра в смазочных системах судовых дизелей с учетом форсирования дизеля, качества применяемых горюче-смазочных материалов, интенсивности старения масла, срабатывания входящих в него присадок и уровня загрязнения крупнозернистыми механическими примесями. Дано заключение, что комбинированная очистка масла в двигателях внутреннего сгорания с использованием байпасной схемы сепарирования и центрифугирования облегчает функционирование полнопоточно подключаемых в систему смазки автоматизированных фильтров и позволяет увеличить срок автономной работы их до 5 тыс. ч. При этом надежная и эффективная работа очистителей возможна в самых жестких условиях загрязнения и старения масла.The relevance of research on the working processes of a self-cleaning filter intended for cleaning engine oil in internal combustion engines is substantiated. A methodology for calculating the regeneration parameters of automated filters generated by the SRF-60 and SRFD-120 modules is presented. The influence on the efficiency of the regeneration of the filtering process, which is identified by the specific intensity of the removal of the dispersed phase from the oil, the hydrodynamics (Reynolds number) and the relative backwash time, the adhesive properties of the sediments, the design features of the filter, and the dispersion of contaminants are highlighted. The evidence of the adequacy of the calculated experimental dependencies obtained from laboratory tests of the filter model and their compliance with the data of field tests of self-cleaning filters on ships is presented. The possibility of calculating and adjusting the autonomous work of the self-cleaning filter in the lubrication systems of marine diesel engines is shown taking into account the forcing of the diesel engine, the quality of the fuels and lubricants used, the aging rate of the oil, the operation of its additives and the level of contamination with coarse-grained mechanical admixture. It is concluded that the combined cleaning of oil in internal combustion engines using a bypass separation and centrifugation scheme facilitates the functioning of fully automated filters in the lubrication system and allows them to increase their battery life up to five thousand hours. Reliable and efficient operation of the purifiers is possible in the harshest conditions of oil pollution and aging.


Author(s):  
T. Dziubak

The aim of this study is to provide an experimental properties evaluation of a standard filter material (cellulose) and materials with fiber layer addition with small diameters (nanofibers). Filter media, including cellulose, used in the internal combustion engine inlet air filtration are made of high diameter fibres, approx. 15 µm. Significantly higher separation and filtration efficiency performance are obtained for materials with lower fibre diameters (nanofibres), however, at the expense of a significantly higher pressure drop, affecting the engine performance. Filter media manufacturers mainly specify the structure parameters (pore size, air permeability and thickness), without giving any information on the dust filtration performance and rate. The literature includes test results for models of different filter media structures. Filtration process modelling using polydisperse dust with particles of different shape and density and irregular filter media structure is possible using advanced computer techniques, however, the process is complex and requires many simplifications. Test results can be applied directly in the automotive industry. The data can be obtained by experimental tests on filter medium specimens, complete filter elements or air filters which are costly and time-consuming tests, however, those test methods are the most reliable. Conditions and testing methodology for intake air filter materials used in internal combustion engines were developed. Filtration and flow resistance efficiency and accuracy were done depending on test dust mass stopped per unit area. Tested materials filtration efficiency was assessed by a filtration quality factor, which includes experimentally determined efficiency and accuracy as well as flow resistance values. Much higher efficiency and filtration accuracy of dust grains below 5 µm in filtration materials with nanofibers addition compared to standard filtration material (filter paper) were demonstrated. For the same flow resistance values, filter materials with nanofibers addition accumulate smaller dust mass than standard filter paper. Usage of materials with nanofibers addition used in motor vehicles intake air filtration ensures their high efficiency and accuracy. It minimises its components wear, but at the expense of faster flow resistance increase, which shortens filter life and increases filter replacement frequency. Results obtained during the experimental research partly fill the gap when it comes to the basic material properties used in internal combustion engines intake air filter partitions production.


Author(s):  
Bernhard Rossegger ◽  
Michael Engelmayer ◽  
Andreas Wimmer

Abstract Lube oil emission is thought to have a negative influence on hydrocarbon and particle emissions, autoignition and the life-cycle cost of internal combustion engines. Thus, one of the major goals of combustion engine research and development is to optimize lube oil consumption, for example by optimizing the tribological behavior of the piston group (interaction between piston rings and cylinder liner). This requires the application of a fast and accurate lube oil consumption measurement method. Methods such as gravimetric and volumetric measurement are outdated for R&D applications because of measurement time, absolute accuracy as well as repeatability, however some OEMs are still applying this method. At present, the use of tracer methods for measuring lube oil consumption is considered the most promising in terms of decreasing measurement time and increasing accuracy. For example, sulfur as a tracer is one of the most established methods for measuring lube oil consumption, but previous publications have revealed downsides and future challenges of its use. This publication, however, highlights the challenges of using the stable hydrogen isotope deuterium as a tracer which are still to overcome, in order to become a viable and reliable method for measuring lube oil consumption on internal combustion engines. In the introduction, a novel concept of measuring lube oil consumption with deuterated engine oil and the test bench setup are explained. Following laboratory experiments, test bench runs on a heavy-duty diesel engine and long-term studies on a field engine, three major challenges facing the new approach are identified and potential solutions are proposed. First, the long-term stability of the tracer in the lube oil and potential changes in the physical and chemical properties of the oil due to deuteration are discussed in light of the results of tests on a field engine that uses deuterated engine oil. Second, the hydrogen-deuterium exchange process to mark the oil with the tracer is examined and potential approaches for reducing cost and duration are highlighted. The universal applicability of the deuteration process to several base oil groups is also explained. Finally, the detection of deuterium in the gas of the engine exhaust and potential cross-sensitivities to trace gases as well as other crucial limitations of the detector in analyzing engine exhaust are addressed. The summary presents the requirements for converting the experiments with a deuterium tracer into a reliable method for lube oil consumption measurement providing crucial properties such as high accuracy, short measurement time, effort and ease of use.


2018 ◽  
Vol 7 (4.3) ◽  
pp. 162 ◽  
Author(s):  
Oleksandr Babanin ◽  
Oleksandr Butskiy ◽  
Oleksandr Kovalenko ◽  
Maksym Maksimov

The questions of application of synthetic materials as filtering, in oil systems of internal combustion engines are considered in the article. In existing oil systems, diesel engines of internal combustion use filtering elements that provide limited protection of oil systems from particles of potentially dangerous dimensions and, therefore, wear. They are not designed to work for a long service life with the higher level of oil purity required at the present time. The urgency of these issues is caused by the need to improve the quality of engine oil cleaning and, as a consequence, to increase the reliability of the engine. The use of filter elements made of porous, fibrous polypropylene is proposed. Which, according to the results of the experiment, will allow to extend the service life of the filter elements and improve the quality of their operation. 


Author(s):  
Gennadiy Petrovich Kicha ◽  
Liudmila Anatolievna Semeniuk

The article gives analysis of the advantages and disadvantages of cleaning engine oil in internal combustion engines by filtration and centrifugation. The principles of increasing the efficiency of fine oil purification by combining these methods are formulated. The scheme of a perspective system for fine cleaning of engine oil is presented, which most fully realizes the advantages of full-flow filtration and centrifugation for a two-circuit lubrication system of forced internal combustion engines. The operating conditions of diesel engines are shown, under which the advantages of filtration and centrifugation can be realized to the full. The indices for the specific productivity index and capacity of the centrifugal cleaner are calculated, contributing to the attainment of the minimum wear rate of the engine parts and the maximum service life of the filter elements. Prospects for the application of a full-flow fine engine oil purification system in forced engines with a sequential connection of purification units with different principles of separation of complex heterogeneous polydisperse systems, which include the products of contamination of lubrication systems, are outlined. Particularly effective is the use of the developed combined fine-cleaning system in marine diesel engines with increased rotational speed, operating on screw characteristics. The results of motor tests in the ship's trunk boosted diesels of the new combined lubrication oil fine cleaning system are reported. The results of operational tests in the marine diesel engine ДД108 (8ЧСПН 18/22) of a combined engine oil purification system have been analyzed, which combine the advantages of a full-flow filter and a centrifuge with a discharge head connected in series. The parameters of efficient regular and experienced combined engine oil cleaning system are compared with the effect on aging, wear and varnish and lacquer formation of a diesel engine.


Author(s):  
S.V. Timokhin ◽  
◽  
Yu.V. Rodionov ◽  
I.I. Kurbakov ◽  
◽  
...  

А significant factor affecting the reliability of the internal combustion engine and its technical and Economic indicators is the efficiency of the lubrication system. When the standard oil supply is applied, semiliquid friction occurs between the contacting parts, in which the parts are not completely separated by a layer of oil. However, with this friction, the required durability of components and parts with heat removal is guaranteed. The performance of the engine lubrication system is determined by the state of its elements (coarse and fine filters, oil radiator and pump, valves), as well as the quality of oil, its level in the internal combustion engine crankcase and temperature. In domestic internal combustion engines, the minimum oil level in the crankcase is controlled, but in operation there are situations when the oil level exceeds its maximum permissible value. This situation occurs when coolant or fuel enters the lubrication system. Coolant can get into the oil if the cylinder head gaskets, sleeve o-rings, or cracks in the cylinder head and block are broken. Top-Livo can enter the oil through worn and damaged parts of the fuel equipment (gas pump diaphragm, fuel pump plunger pairs, etc.). These liquids sharply degrade the quality of the oil and increase the wear of internal combustion engine parts, and the standard singlelevel indicator will not give the driver operational information about the malfunction. In connection with the above, the purpose of this work is to improve the technology for monitoring the technical condition of the internal combustion engine lubrication system on the example of the d-245 diesel engine and its modifications, which are widely used in GAZ (GAZ-3309), ZIL (ZIL-5301), MAZ (MAZ Zubrenok), PAZ buses (PAZ-3205), MTZ tractors (MTZ — 100, 892, 1020), agricultural and construction equipment.by developing and implementing a built — in device for monitoring the minimum and maximum oil levels in the crankcase, as well as its temperature. The scientific novelty of the work is due to the use of new circuit and technical solutions, as well as the original algorithm of the sensor operation developed by the authors, based on the use of switching laws of reed switches with normally closed and normally open contacts, the operation of which is spaced over time and controlled oil levels. Block diagram of the proposed device comprises a multifunction sensor level and oil temperature, including sensors of the mi-minimum and increased levels of engine oil in the crankcase of the engine and its temperature, the operation mode switch signal cooling temperature-edusei fluid and engine oil, the first and second voltage сomparators, indicator lights, buzzer, switch power supply, voltage regulator and regular temperature sensor coolant. The use of the developed device significantly increases the reliability and convenience of monitoring one of the most important indicators of internal combustion engines-the oil level in the crankcase, which will avoid significant engine damage. As a result of further research, it is planned to develop the device design, conduct laboratory studies of the developed multifunctional sensor in order to determine the dependence of its resistance on the temperature at the normal level of engine oil in the measuring flask, as well as determine the actual values of the developed sensor response heights at the lower and upper levels.


Sign in / Sign up

Export Citation Format

Share Document