scholarly journals Classification of Big Data: Machine Learning Problems and Challenges in Network Intrusion Prediction

2018 ◽  
Vol 7 (4.36) ◽  
pp. 1189
Author(s):  
Yasser Mohammad Al-Sharo ◽  
Ghazi Shakah ◽  
Mutasem Sh.Alkhaswneh ◽  
Bajes Zeyad Aljunaeidi ◽  
Malik Bader Alazzam

Centre of attraction of paper is on the main complication on classification of Big Data on network encroachment on traffic. It also explains the disputes this system faces that is bestowed by the Big Data difficulties that are correlate with the network interruption forecast. Forecasting of an attainable interruption in a network entails a prolonged accumulation of traffic information or data and being able to get the concept on their features on motion. The constant accumulation in the network of traffic data thereafter ends with Big Data difficulties that as a result of the large amount, change and possessions of Big Data. In order to learn the features of a network, one needs to have the skills in the machine techniques that are always able to capture world skills and knowledge of the traffic to be in order. The properties of Big Data will always end to an important system disputes to be able to apply machine learning foundation. The paper also discusses the disputes and problems in the way of taking care of Big Data categorization representing geometric techniques of learning along with the existing technologies of Big networking. The study particularly explains challenges that have a relationship with the combined directed by the techniques one learns, machine long learning techniques, and representation-learning techniques and technologies that are related to Big Data for example Hive, Hadoop and Cloud that are basics that enhances problem-solving that gives relevant solutions to classification problems in traffic networking.  

2018 ◽  
Vol 7 (4.36) ◽  
pp. 501
Author(s):  
Yasser Mohammad Al-Sharo ◽  
. .

Centre of attraction of paper is on the main complication on classification of Big Data on network encroachment on traffic. It also explains the disputes this system faces that is bestowed by the Big Data difficulties that are correlate with the network interruption forecast. Forecasting of an attainable interruption in a network entails a prolonged accumulation of traffic information or data and being able to get the concept on their features on motion. The constant accumulation in the network of traffic data thereafter ends with Big Data difficulties that as a result of the large amount, change and possessions of Big Data. In order to learn the features of a network, one needs to have the skills in the machine techniques that are always able to capture world skills and knowledge of the traffic to be in order. The properties of Big Data will always end to an important system disputes to be able to apply machine learning foundation. The paper also discusses the disputes and problems in the way of taking care of Big Data categorization representing geometric techniques of learning along with the existing technologies of Big networking. The study particularly explains challenges that have a relationship with the combined directed by the techniques one learns, machine long learning techniques, and representation-learning techniques and technologies that are related to Big Data for example Hive, Hadoop and Cloud that are basics that enhances problem-solving that gives relevant solutions to classification problems in traffic networking.  


2019 ◽  
Author(s):  
Ismael Araujo ◽  
Juan Gamboa ◽  
Adenilton Silva

To recognize patterns that are usually imperceptible by human beings has been one of the main advantages of using machine learning algorithms The use of Deep Learning techniques has been promising to the classification problems, especially the ones related to image classification. The classification of gases detected by an artificial nose is one other area where Deep Learning techniques can be used to seek classification improvements. Succeeding in a classification task can result in many advantages to quality control, as well as to preventing accidents. In this work, it is presented some Deep Learning models specifically created to the task of gas classification.


2021 ◽  
pp. 47-64
Author(s):  
Anisha P. Rodrigues ◽  
Joyston Menezes ◽  
Roshan Fernandes ◽  
Aishwarya ◽  
Niranjan N. Chiplunkar ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 11806-11809

Intrusion Detection System (IDS) is the most mainstream approach to protect a computer network from different malicious activities to identify an intrusion. There have been a lot of attempts towards more exceptional performance specifically in IDSs which depends on Data Mining (DM) and Machine Learning Techniques (MLT). Though there is a destructive issue in that available assessment, DataSet (DS), called KDD DS, can't reflect current network circumstances and the most recent attack situations. As far as we could know, there is no possible assessment DS. We present a novel evaluation DS in this paper, called Kyoto, based on the 5 years of actual traffic information, which derived from different sorts of honey pots. This Kyoto DS is utilized for testing and assessing distinctive MLT has examined in this work. The attention was on unprocessed measurements True +ve (TrPo), False +ve (FaPo), True – ve (TrNa), and False – ve (FaNa) to assess execution and to improve the identification rate of IDS.


Author(s):  
Damian Alberto

The manual classification of a large amount of textual materials are very costly in time and personnel. For this reason, a lot of research has been devoted to the problem of automatic classification and work on the subject dates from 1960. A lot of text classification software has appeared. For some tasks, automatic classifiers perform almost as well as humans, but for others, the gap is still large. These systems are directly related to machine learning. It aims to achieve tasks normally affordable only by humans. There are generally two types of learning: learning “by heart,” which consists of storing information as is, and learning generalization, where we learn from examples. In this chapter, the authors address the classification concept in detail and how to solve different classification problems using different machine learning techniques.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


Sign in / Sign up

Export Citation Format

Share Document