scholarly journals Common Bunt Resistance of Winter Wheat Genotypes Under Artificial Infection

2018 ◽  
Vol 7 (4.38) ◽  
pp. 737 ◽  
Author(s):  
Kuttymurat Tagayev ◽  
Aleksey Morgounov ◽  
Minura Yessimbekova ◽  
Aigul Abugalieya

Common bunt (Tilletia caries) is a seed-transmitted fungal disease in wheat. The resistant cultivars and germplasm lines of wheat will be useful for control this type of disease in organic farming. A set of 75 wheat cultivars and lines from International Winter Wheat Improvement Program (IWWIP) of Turkey were used to determine resistance to common bunt. The experiment was carried out at the Kazakh Research Institute of Agriculture and experimental material was grown in an artificially inoculated nursery during the 2016-2017 season. The productivity of wheat genotypes under artificial infection ranged from 1.13 t/ha to 7.29 t/ha. The susceptible check to common bunt, GEREK 79 had a high level of susceptibility to common bunt with 59.7% infected heads. The high mean disease incidence in the nursery was 74.4%. Sixteen genotypes were resistant to disease under artificial inoculation. Out of 75 wheat cutivars, 42 wheat genotypes (56% of all genotypes) were classified as moderate resistance to disease. Identified resistance genotypes will be useful for breeding programs for forming resistance cultivars to common bunt in Kazakhstan.   

Author(s):  
Vytautas Ruzgas ◽  
Žilvinas Liatukas

Response of Lithuanian Winter Wheat Advanced Lines to Common Bunt (Tilletia tritici (BJERK.) WINT) The study was carried out at the Lithuanian Institute of Agriculture in an artificially inoculated nursery during 2006-2007. Resistance to common bunt in 2006 was tested for 71, in 2007 for 118 breeding lines of Lithuanian winter wheat from the competitive trial nursery. Additionally, 148 promising lines were selected and tested from the check nursery, which possessed some resistance in their pedigree ancestors. The average disease incidence in 2006 and 2007 was 80.9 and 63.5%, respectively. The very high infection level highlighted the genotypes with the most effective resistance under conditions highly favourable for common bunt. There were no lines without infected ears. Among the 29 breeding lines tested in the two years, two lines Bill/Aspirant and Dream/Lut.9329 were infected the least, 17.2% and 1.9% in 2006 and 18.5% and 7.8% in 2007, respectively. Most of the breeding lines were highly susceptible. Lines with disease incidence over 50% accounted for over 90% in 2006 and 80% in 2007 of the total lines tested. The most resistant lines had in their pedigrees the following resistance sources: genotypes Bill, Lut.9329, Strumok, Lut.9313, Lut.9358, Tommi as well as Dream, Haldor, 91002G2.1, 96/101, Bezenchiukskaya380.


1999 ◽  
Vol 35 (No. 1) ◽  
pp. 26-29 ◽  
Author(s):  
A. Pospisil ◽  
J. Benada ◽  
I. Polisenská

During 1997–1998, the reaction of the collections of winter and spring wheat varieties to Tilletia caries was determined. In both years the most diseased winter varieties were Simona and Sparta, the least diseased were Samara and Ilona. High variability in the level of infection was observed in some varieties (VIada, Estica, Regina, Vega). No winter wheat variety was completely resistant. The most diseased spring wheat variety was Alexandria in both years, while Grandur showed no infection. High variability in the level of infection was observed in the special trials with cv. Ina and Contra. In trials of the efficacy of seed dressing against T. caries and T. laevis there was variability only in the controls, but not in dressed variants.


Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 530-536 ◽  
Author(s):  
Wade H. Elmer ◽  
Robert J. McGovern

The epidemiology and strategies for management of Fusarium wilt of China aster (Callistephus chinensis) were studied in Connecticut and Florida, USA, by examining seed contamination, on-farm disease incidence, sanitation, host resistance, and various soil treatments. Five out of 25 commercial seed packages from three separate distribution companies assayed in Connecticut had seeds contaminated with the pathogen Fusarium oxysporum f. sp. callistephi. Farm surveys of two cut-flower farms in Connecticut had disease incidences of 32 and 58%, while in Florida, the incidence of the disease ranged from 0.002 to 71.2% in two cut-flower operations. All pathogenic isolates from seed and symptomatic plants in Connecticut were vegetatively compatible, suggesting a common origin. Pathogenic isolates from Florida and nonpathogenic isolates fell into different vegetative compatibility groups and may have had another origin. Sodium hypochlorite solutions (1%) eliminated the fungus from seeds and Styrofoam when applied as a soak or spray, respectively. Soil fumigation with methyl bromide + chloropicrin, 1,3-dichloropropene + chloropicrin, or metam sodium maintained Fusarium wilt at low levels at a Florida cut-flower production facility. Evaluations of disease resistance of 44 cultivars in the greenhouse identified eight cultivars with moderate resistance. Four cultivars were identified with moderate resistance in field trials and thus could serve as a source of resistant germplasm for future breeding programs. These findings should encourage growers to use sanitation protocols to prevent entry of the pathogen into their fields and to choose commercially available cultivars that have moderate resistance.


2021 ◽  
pp. 82-87
Author(s):  
Т. G. Derova ◽  
N. V. Shishkin ◽  
О. S. Kononenko

Systematic work on the development of winter wheat varieties possessing resistance to a complex of the most harmful diseases has been carried out in the Agricultural Research Center “Donskoy” since the early 1970s. During this period, there has been created a large number of varieties that possess resistance to 3–4 diseases in conditions of infectious backgrounds of pathogens. Due to the analysis of varieties, there was identified a small number of varieties resistant to powdery mildew. Powdery mildew, caused by the fungus Blumeria graminis (DC) Speer, annually occurs on wheat, affecting all aboveground plant organs. Earlier the FSBSI “ARC “Donskoy” developed and widely cultivated the medium-resistant varieties ‘Tanais’ (2006), ‘Nakhodka’ (2015), ‘Etyud’, ‘Shef’, ‘Lilit’ (2016), ‘Volnitsa’ (2017), ‘Polina’, Yubiley Dona’ , ‘Podarok Krymu’ (2018), ‘Niva Dona’ (2019). In recent years, breeders have developed such varieties with high resistance to the pathogen as ‘Donskaya Step’ (2016), ‘Premiera’, ‘Univer’ (2018), ‘Priazovye’, ‘Zolotoy Kolos’ (2020). But the breeding process of varieties for resistance to powdery mildew is difficult, since it is explained by the small number of effective resistance genes and their sources. Therefore, the purpose of the current study was to identify new sources of resistance to the pathogen. Under the conditions of artificial infection, during last 10 years there was conducted a testing of 302 varieties and samples of winter wheat of domestic and foreign breeding. There have not been identified immune varieties. There was identified a small percentage (15.2) of varieties that were resistant to the pathogen. Among the Russian varieties they were ‘L 3191 k-5-8’, ‘Akhmat’, ‘Alievich’, ‘Barier’, ‘Ulyasha’, ‘Knyaginya Olga’, which were not attacked by the disease over the years of testing. Among foreign varieties, the varieties ‘Bombus’, ‘Sailor’ (France), ‘Etana’, ‘Rotax’, ‘KVS-Emil’ (Germany), ‘Fidelius’ (Austria), ‘MV 09-04’ (Hungary) were identified as the best ones in their resistance to powdery mildew. All identified sources of resistance have been recommended in breeding programs for immunity.


Genome ◽  
2011 ◽  
Vol 54 (5) ◽  
pp. 419-430 ◽  
Author(s):  
Muge Sayar-Turet ◽  
Susanne Dreisigacker ◽  
Hans-J. Braun ◽  
Arne Hede ◽  
Ruth MacCormack ◽  
...  

The genetic diversity within wheat breeding programs across Turkey and Kazakhstan was compared with a selection of European cultivars that represented the genetic diversity across eight European countries and six decades of wheat breeding. To focus the measure of genetic diversity on that relevant to disease-resistant phenotypes, nucleotide-binding-site (NBS) profiling was used to detect polymorphisms associated with the NBS motifs found within the NBS – leucine-rich repeat (LRR) class of resistance (R) genes. Cereal-specific NBS primers, designed specifically to the conserved NBS motifs found within cereal R-genes, provided distinct NBS profiles. Although the genetic diversity associated with NBS motifs was only slightly higher within the Eastern wheat genotypes, the NBS profiles produced by Eastern and European wheat lines differed considerably. Structure analysis divided the wheat genotypes into four groups, which compared well with the origin of the wheat genotypes. The highest levels of genetic diversity were seen for the wheat genotypes from the Genetic Resource Collection held in Ankara, Turkey, as wheat genotypes within breeding programs were genetically more similar. The wheat genotypes from Kazakhstan were the most similar to the European cultivars, reflecting the significant number of eastern European cultivars used in the breeding program in Kazakhstan. In general, the NBS profiles suggested that NBS–LRR R-gene usage in winter wheat breeding in Turkey and Kazakhstan differed from that deployed in European cultivars.


2011 ◽  
Vol 42 (No. 2) ◽  
pp. 31-37
Author(s):  
J. Palicová-Šárová ◽  
A. Hanzalová

The reaction of 50 winter wheat cultivars/lines to artificial infection with Pyrenophora tritici-repentis (PTR) races 1, 3, and 6 was studied under greenhouse conditions. The set of tested cultivars/lines included predominantly cultivars registered in the Czech Republic and some new breeding lines. A high level of resistance to P. tritici-repentis was detected in the cultivars Clarus, Rheia, Cubus, SHMK WW 14-92, Šárka, Vlasta and Dromos (SWS 799.14953), susceptible reactions were observed in the cultivars Caphorn, Corsaire, Karolinum, Heroldo (PBIS 00/91), Hedvika, Biscay, Svitava, Barroko (PBIS 00/140) to all three races tested. The majority of the tested cultivars possess a moderate level of resistance to PTRraces 1, 3, and 6. Significant differences were proved not only in the reaction of the tested cultivars but also in the aggressiveness of the three used isolates.  


2012 ◽  
Vol 92 (1) ◽  
pp. 183-189 ◽  
Author(s):  
R. J. Graf ◽  
J. B. Thomas ◽  
B. L. Beres ◽  
D. A. Gaudet ◽  
A. Laroche ◽  
...  

Graf, R. J., Thomas, J. B., Beres, B. L., Gaudet, D. A., Laroche, A. and Eudes, F. 2012. Flourish hard red winter wheat. Can. J. Plant Sci. 92: 183–189. Flourish is a hard red winter wheat (Triticum aestivum L.) eligible for all grades of the Canada Western Red Winter wheat class. Compared with the check cultivars in the Western Winter Wheat Cooperative registration trials (CDC Osprey, AC Bellatrix, Radiant, CDC Buteo), Flourish produced similar grain yield with earlier maturity, shorter straw, improved lodging resistance and higher grain protein content. Flourish displayed winter survival similar to the checks. In the eastern prairie rust hazard region of Manitoba and eastern Saskatchewan, Flourish yielded about 5% more grain than CDC Buteo and CDC Falcon, cultivars that are well-adapted and widely grown in the region. Flourish exhibited intermediate resistance to stem and leaf rust combined with moderate resistance to stripe rust and common bunt, a unique combination of disease resistance traits for a western Canadian winter wheat cultivar.


Sign in / Sign up

Export Citation Format

Share Document