scholarly journals Fabrication and Mechanical Characterization of Glass and Carbon Fibre Reinforced Composite’s Used for Marine Applications

2018 ◽  
Vol 7 (4.5) ◽  
pp. 228
Author(s):  
D. Sarath Chandra ◽  
Dr. K.Vijaya Kumar Reddy ◽  
Dr. Omprakash Hebbal

The composite materials are replacing the traditional materials, because of its superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio. The developments of new materials are on the anvil and are growing day by day. Fiber composites such as Glass-Fiber Reinforced Polymers (GFRP) composites and Carbon-Fiber Reinforced Composites (CFRP) became more attractive due to their better properties for marine applications. In this paper, GFRP, CFRP and Hybrid composites are developed and their mechanical properties such as Hardness, tensile strength, compression strength, impact strength, toughness are evaluated. The study used to compare the effect volumetric fraction of fibers in order to improve strength and toughness, this done by using two types of fibers E-glass and carbon & two types of resins epoxy     ( AralditeLY556 and Aradur HY951 ) and vinyl ester. In this experimental study, we found that high tensile strength, high specific strength, hardness and low density are obtained with carbon fibre reinforced composites, but high impact strength and toughness are obtained with glass fibre reinforced composites. Finally incorporate the result and try to find alternatives composites using for marine applications and obtain the best mechanical properties  

2021 ◽  
Vol 2021 ◽  
pp. 102-108
Author(s):  
J. Domenech-Pastor ◽  
P. Diaz-Garcia ◽  
D. Garcia

Composites are materials formed by the combination of two or more components that acquire better properties than the ones obtained by each component on its own. Composites have been widely used in the industry due to its light weight and good mechanical properties. To improve these properties several layers of reinforced material (e.g., carbon fibre) are overlapped which produce an increase in the fibre consumption. In this sense Tailored Fibre Placement (TFP) embroidery can offer good opportunity to reduce the consumption of reinforced fibre while improving the mechanical properties due to the alignment of the fibres in the effort direction. This study analyzes the performance of carbon fibre reinforced composites with Polyester resin made with TFP embroidery technology against flexural strength efforts and without using plain woven fabrics to demonstrate that the use of reinforcement fabrics in composites can be optimized by a curved alignment of the fibers. Two different structures were embroidered with TFP technology, one simulating a woven fabric with straight unidirectional alignment of fibres in horizontal and vertical direction, and a second structure made with curvilinear alignment of carbon fibers. After the study of the flexural mechanical properties an improvement of 18% was obtained in maximum flexural strength.


2015 ◽  
Vol 12 (1) ◽  
pp. 54-59 ◽  
Author(s):  
Abhishek Suvarna ◽  
Akash Katagi ◽  
Jackson Pasanna ◽  
Sunil Kumar ◽  
Basavaraju Bennehalli ◽  
...  

The present investigation focuses on the fabrication and mechanical characterization of alkali treated natural abaca fiber reinforced urea formaldehyde composites. The composites were prepared by means of compression moulding, and then the effects of fiber loading on mechanical properties such as tensile strength, flexural strength and impact strength were investigated. The composite with 40 wt% abaca fibers gave excellent tensile strength and flexural strength showing that it has the most superior bonding and adhesion of all the composites. In particular, the highest value, 10.02 kJ/m2 of charpy impact strength is observed in the composite with 50 wt% abaca fiber. This work revealed the potential of using abaca fibers in fiberboard.


Author(s):  
Mitali Dugvekar, Et. al.

The utility of composites in today’s modern world is not hidden from anyone. From tiny objects like football to aerospace, everything involves the use of composites. Composites nearly form the backbone of our society. Composites are basically made from matrices and reinforcement. Out of the majority of reinforcement being used, Glass fibers usage cannot be neglected. These are made of fine fibers of glass (made of SiO2). They are used to reinforce various materials like arrows, bows and crossbows, translucent roofing panels, tent poles, boat hulls and paper honeycomb. This review paper is a study of various research papers related to mechanical properties of glass fibers when used with different type of matrices namely, tensile strength, impact strength and flexural strength.


2020 ◽  
pp. 152808372093957
Author(s):  
Chandrasekaran Paramasivam ◽  
Rameshbabu Venugopal

The main focus of automotive industry is on developing and applying new materials and technologies for enhancing the comfort and security levels in the vehicles. To fulfill this requirement high strength and high modulus fiber reinforced composite structures play an important role in the automotive industry. The novelty in this research work is that the composite panel made by 2 D woven fabrics by using Glass and Basalt fabric material composite structure by suitable incorporation of panel design which enhanced the mechanical properties. The blend proportion of Glass and Basalt fabric reinforcement was 100% Glass, 100% Basalt and 50:50 Glass/Basalt fabrics. Hand lay-up process was adopted to fabricate the composite panels. Different sets of panel were produce by varying the curing time, pressure. The resultant panels were analyzed for the mechanical properties such as Tensile strength, Flexural strength and Impact strength tests. From the analysis of results the panel made by using 100% Basalt fabric with 20 bar pressure and 15 minutes curing time showed a better tensile strength of 95 MPa, flexural strength of 29.91 MPa and impact strength of 12.50 MPa. Similarly, the results of 50:50 Glass/Basalt fibre with 30 bar pressure and 15 minutes curing time showed a better tensile strength of 94.83 MPa, flexural strength of 29.51 MPa and impact strength of 12.30 MPa. The outcome of the findings is that the mechanical properties of panel are directly proportional to pressure and time and blend type.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1190 ◽  
Author(s):  
Cristina Monteserín ◽  
Miren Blanco ◽  
Nieves Murillo ◽  
Ana Pérez-Márquez ◽  
Jon Maudes ◽  
...  

Delamination and brittle matrix fracture have long since been the biggest problems in fibre-reinforced composites. Recently, the incorporation of electrospun nanofibre veils has been shown to be an effective method for improving the mechanical properties of these composites, without causing process problems and negatively affecting other mechanical properties. Thus, these nanofibres have the potential to be used as thickness-reinforcing materials in composites. This paper investigates the effect of incorporating standalone electrospun nanofibre veils made of two different types of polyamide 6 (PA6) on the mechanical properties of carbon fibre/epoxy composites. The influence of positioning the electrospun veils at different interlaminar positions of the laminate has also been investigated.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tsegaye Sh. Lemmi ◽  
Marcin Barburski ◽  
Bethalihem T. Samuel

AbstractNatural fiber-reinforced composites are getting more attention from researchers and manufacturing companies to replace metals and synthetic materials that have dominated the manufacturing industries. In this study, the mechanical properties of unidirectional (UD) flax roving-reinforced composites and woven fabric-reinforced composites were investigated. Three different composites were prepared from flax rovings, which have the same linear density and epoxy resin matrix, with different reinforcement and composite preparation methods. The samples were subjected to experimental tests of flexural rigidity and tensile strength in a parallel and perpendicular direction to fiber orientation. The test results showed that flexural rigidity and tensile strength of flax fiber-reinforced composites are highly dependent on the direction of fiber orientation. The results also reveal that in a parallel direction to fiber orientation, UD composites have higher flexural rigidity and tensile strength than woven fabric-reinforced composite.


Fibre reinforced composites have been an essential concern in various fields, especially in the field of aerospace owing to its high strength to weight ratio, toughness, corrosion resistant and low cost. Natural fibre reinforced composites have produced better results in mechanical properties like impact, toughness and fatigue strengths when compared to synthetic fibre reinforced composites. Recently researches have been conducted on different varieties of natural fibres for use in plastics such as jute straw, wood, rice husk, wheat, barley etc. Natural fibres have also attracted the attention of researchers due to its availability, renewability, degradability and most importantly ecofriendly. In this work an attempt is made to improve the mechanical properties of the composite and also to enhance the compatibility of the fibres with the matrix. The composite is prepared by reinforcing banana fibres into unsaturated epoxy matrix using hand layup method. Mechanical properties such as tensile strength, flexural strength and hardness strengths are carried out on the specimens made by reinforcing with 5%, 10 % and 15 %concentration of banana fibre by weight. The results showed that the composite with 15% concentration of banana fibre produced higher tensile strength of 21.43 MPa, flexural strength of 0.895 kPa and Shroud hardness of 59.3.


Sign in / Sign up

Export Citation Format

Share Document