scholarly journals A Method for Precision Surgical Implantation and Probe Insertion in Sprague-Dawley Rat Brain

Author(s):  
Asma Ulhusna Shaimi ◽  
Wan Raihana Wan Aasim ◽  
Wan Amir Nizam Wan A Hmad ◽  
Hasmah Abdullah

Motorized stereotaxic is an advanced tool for surgery and implantation of cannula and electrodes in neuroscience. Stereotaxic surgery and implantation has become increasingly important tool, applied in many experiments. The goal in this present study to determine the surgical implantation and probe insertion at the target location accurately and precisely using motorized stereotaxic. In this study, the method allowed to evaluate the DHEAS fluorescence level through in vivo imaging approach at the target region in the hippocampus rat brain. This present study also described the surgical implantation and probe insertion by motorized stereotaxic as the precise and accurate techniques than conventional stereotaxic procedures. With the rat brain atlas by Paxinos and Watson (2004), the imaging approach can be evaluated precisely at the target location corresponding surgical implantation and probe insertion techniques.

2021 ◽  
Vol 5 ◽  
pp. 239821282110363
Author(s):  
Malcolm J. W. Prior ◽  
Tobias Bast ◽  
Stephanie McGarrity ◽  
Jürgen Goldschmidt ◽  
Daniel Vincenz ◽  
...  

There is currently no brain atlas available to specifically determine stereotaxic coordinates for neurosurgery in Lister hooded rats despite the popularity of this strain for behavioural neuroscience studies in the United Kingdom and elsewhere. We have created a dataset, which we refer to as ‘Ratlas-LH’ (for Lister hooded). Ratlas-LH combines in vivo magnetic resonance images of the brain of young adult male Lister hooded rats with ex vivo micro-computed tomography images of the ex vivo skull, as well as a set of delineations of brain regions, adapted from the Waxholm Space Atlas of the Sprague Dawley Rat Brain. Ratlas-LH was produced with an isotropic resolution of 0.15 mm. It has been labelled in such a way as to provide a stereotaxic coordinate system for the determination of distances relative to the skull landmark of bregma. We have demonstrated that the atlas can be used to determine stereotaxic coordinates to accurately target brain regions in the Lister hooded rat brain. Ratlas-LH is freely available to facilitate neurosurgical procedures in the Lister hooded rat.


2000 ◽  
Vol 83 (4) ◽  
pp. 2022-2029 ◽  
Author(s):  
Ikram M. Elayan ◽  
Milton J. Axley ◽  
Paruchuri V. Prasad ◽  
Stephen T. Ahlers ◽  
Charles R. Auker

Oxygen (O2) at high pressures acts as a neurotoxic agent leading to convulsions. The mechanism of this neurotoxicity is not known; however, oxygen free radicals and nitric oxide (NO) have been suggested as contributors. This study was designed to follow the formation of oxygen free radicals and NO in the rat brain under hyperbaric oxygen (HBO) conditions using in vivo microdialysis. Male Sprague-Dawley rats were exposed to 100% O2 at a pressure of 3 atm absolute for 2 h. The formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) as a result of perfusing sodium salicylate was followed as an indicator for the formation of hydroxyl radicals. 2,3-DHBA levels in hippocampal and striatal dialysates of animals exposed to HBO conditions were not significantly different from controls. However, rats treated under the same conditions showed a six- and fourfold increase in nitrite/nitrate, break down products of NO decomposition, in hippocampal and striatal dialysates, respectively. This increase was completely blocked by the nitric oxide synthase (NOS) inhibitor l-nitroarginine methyl ester (l-NAME). Using neuronal NOS, we determined the NOS O2 K m to be 158 ± 28 (SD) mmHg, a value which suggests that production of NO by NOS would increase approximately four- to fivefold under hyperbaric O2 conditions, closely matching the measured increase in vivo. The increase in NO levels may be partially responsible for some of the detrimental effects of HBO conditions.


2015 ◽  
Vol 35 (3) ◽  
pp. 501-511 ◽  
Author(s):  
Jenny-Ann Phan ◽  
Anne M Landau ◽  
Dean F Wong ◽  
Steen Jakobsen ◽  
Adjmal Nahimi ◽  
...  

We quantified the binding potentials ( BPND) of [11C]yohimbine binding in rat brain to alpha-2 adrenoceptors to evaluate [11C]yohimbine as an in vivo marker of noradrenergic neurotransmission and to examine its sensitivity to the level of noradrenaline. Dual [11C]yohimbine dynamic positron emission tomography (PET) recordings were applied to five Sprague Dawley rats at baseline, followed by acute amphetamine administration (2 mg/kg) to induce elevation of the endogenous level of noradrenaline. The volume of distribution ( VT) of [11C]yohimbine was obtained using Logan plot with arterial plasma input. Because alpha-2 adrenoceptors are distributed throughout the brain, the estimation of the BPND is complicated by the absence of an anatomic region of no displaceable binding. We used the Inhibition plot to acquire the reference volume, VND, from which we calculated the BPND. Acute pharmacological challenge with amphetamine induced a significant decline of [11C]yohimbine BPND of ∼38% in all volumes of interest. The BPND was greatest in the thalamus and striatum, followed in descending order by, frontal cortex, pons, and cerebellum. The experimental data demonstrate that [11C]yohimbine binding is sensitive to a challenge known to increase the extracellular level of noradrenaline, which can benefit future PET investigations of pathologic conditions related to disrupted noradrenergic neurotransmission.


2019 ◽  
Author(s):  
Alba Peris-Yague ◽  
Amanda Kiemes ◽  
Diana Cash ◽  
Marie-Caroline Cotel ◽  
Nisha Singh ◽  
...  

AbstractPost-mortem studies suggest that schizophrenia is associated with abnormal expression of specific GABAA receptor (GABAAR) α subunits, including α5GABAAR. Positron emission tomography (PET) measures of GABAAR availability in schizophrenia, however, have not revealed consistent alterations in vivo. Animal studies using the GABAAR agonist [3H]-muscimol provide evidence that antipsychotic drugs influence GABAAR availability, in a region-specific manner, suggesting a potential confounding effect of these drugs. No such data, however, are available for more recently developed subunit-selective GABAAR radioligands. To address this, we therefore combined a rat model of clinically relevant antipsychotic drug exposure with quantitative receptor autoradiography. Haloperidol (0.5 and 2 mg/kg/day) or drug vehicle were administered continuously to adult male Sprague-Dawley rats via osmotic mini-pumps for 28 days. Quantitative receptor autoradiography was then performed post-mortem using the GABAAR subunit-selective radioligand [3H]-Ro15-4513 and the non-subunit selective radioligand [3H]-flumazenil. Chronic haloperidol exposure increased [3H]-Ro15-4513 binding in the CA1 sub-field of the rat dorsal hippocampus (p<0.01; q<0.01; d = +1.3), which was not dose-dependent. [3H]-flumazenil binding also increased in most rat brain regions (p<0.05; main effect of treatment), irrespective of the haloperidol dose. These data confirm previous findings that chronic haloperidol exposure influences the specific binding of non-subtype selective GABAAR radioligands and is the first to demonstrate a potential effect of haloperidol on the binding of a α1/5GABAAR-selective radioligand. Although caution should be exerted when extrapolating results from animals to patients, our data support a view that exposure to antipsychotics may be a confounding factor in PET studies of GABAAR in the context of schizophrenia.


1988 ◽  
Vol 64 (5) ◽  
pp. 1829-1836 ◽  
Author(s):  
S. Adler ◽  
V. Simplaceanu ◽  
C. Ho

Buffering capacity of most tissues is composed of both rapid and slow phases, the latter presumably due to active acid extrusion. To examine the time course of brain buffering the brain pH of Sprague-Dawley rats was measured using 31P-nuclear magnetic resonance. The effect on brain pH of 30- or 58-min exposures to 20% CO2 followed by 30- or 38-min recovery periods, respectively, was studied. Brain pH reached its lowest value after a 15-min exposure to elevated CO2, thereafter slowly and steadily increasing. During recovery brain pH rose rapidly in the first 5 min exceeding control brain pH by 0.08 pH units. Brain pH fell during the next 30 min despite increases in blood pH and decreases in blood CO2 tension. Calculated intrinsic brain buffering rose steadily threefold during the last 40 min of CO2 exposure and during the final 30 min of recovery. These data show that in rat brain there is a temporally late buffering process, most likely active acid extrusion, requiring greater than 30 min for full activation and at least 30 min for discontinuation.


Author(s):  
J.S. Geoffroy ◽  
R.P. Becker

The pattern of BSA-Au uptake in vivo by endothelial cells of the venous sinuses (sinusoidal cells) of rat bone marrow has been described previously. BSA-Au conjugates are taken up exclusively in coated pits and vesicles, enter and pass through an “endosomal” compartment comprised of smooth-membraned tubules and vacuoles and cup-like bodies, and subsequently reside in multivesicular and dense bodies. The process is very rapid, with BSA-Au reaching secondary lysosmes one minute after presentation. (Figure 1)In further investigations of this process an isolated limb perfusion method using an artificial blood substitute, Oxypherol-ET (O-ET; Alpha Therapeutics, Los Angeles, CA) was developed. Under nembutal anesthesia, male Sprague-Dawley rats were laparotomized. The left common iliac artery and vein were ligated and the right iliac artery was cannulated via the aorta with a small vein catheter. Pump tubing, preprimed with oxygenated 0-ET at 37°C, was connected to the cannula.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


Author(s):  
Arthur J. Wasserman ◽  
Azam Rizvi ◽  
George Zazanis ◽  
Frederick H. Silver

In cases of peripheral nerve damage the gap between proximal and distal stumps can be closed by suturing the ends together, using a nerve graft, or by nerve tubulization. Suturing allows regeneration but does not prevent formation of painful neuromas which adhere to adjacent tissues. Autografts are not reported to be as good as tubulization and require a second surgical site with additional risks and complications. Tubulization involves implanting a nerve guide tube that will provide a stable environment for axon proliferation while simultaneously preventing formation of fibrous scar tissue. Supplementing tubes with a collagen gel or collagen plus extracellular matrix factors is reported to increase axon proliferation when compared to controls. But there is no information regarding the use of collagen fibers to guide nerve cell migration through a tube. This communication reports ultrastructural observations on rat sciatic nerve regeneration through a silicone nerve stent containing crosslinked collagen fibers.Collagen fibers were prepared as described previously. The fibers were threaded through a silicone tube to form a central plug. One cm segments of sciatic nerve were excised from Sprague Dawley rats. A control group of rats received a silicone tube implant without collagen while an experimental group received the silicone tube containing a collagen fiber plug. At 4 and 6 weeks postoperatively, the implants were removed and fixed in 2.5% glutaraldehyde buffered by 0.1 M cacodylate containing 1.5 mM CaCl2 and balanced by 0.1 M sucrose. The explants were post-fixed in 1% OSO4, block stained in 1% uranyl acetate, dehydrated and embedded in Epon. Axons were counted on montages prepared at a total magnification of 1700x. Montages were viewed through a dissecting microscope. Thin sections were sampled from the proximal, middle and distal regions of regenerating sciatic plugs.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S468-S468
Author(s):  
Jennifer K Callaway ◽  
Christine Molnar ◽  
Song T Yao ◽  
Bevyn Jarrott ◽  
R David Andrew

Sign in / Sign up

Export Citation Format

Share Document