scholarly journals Ignoring the Elephant in the Room: The Carbon Footprint of Climate Change Research

ARCTIC ◽  
2009 ◽  
Vol 62 (2) ◽  
Author(s):  
Ryan K. Brook
Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.


2021 ◽  
pp. 004728162110078
Author(s):  
Shanna Cameron ◽  
Alexandra Russell ◽  
Luke Brake ◽  
Katherine Fredlund ◽  
Angela Morris

This article engages with recent discussions in the field of technical communication that call for climate change research that moves beyond the believer/denier dichotomy. For this study, our research team coded 900 tweets about climate change and global warming for different emotions in order to understand how Twitter users rely on affect rhetorically. Our findings use quantitative content analysis to challenge current assumptions about writing and affect on social media, and our results indicate a number of arenas for future research on affect, global warming, and rhetoric.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
T Batool ◽  
A Neven ◽  
Y Vanrompay ◽  
M Adnan ◽  
P Dendale

Abstract Funding Acknowledgements Type of funding sources: Other. Main funding source(s): Special Research Fund (BOF), Hasselt University Introduction The transportation sector is one of the major sectors influencing climate change, contributing around 16% of total Greenhouse gases (GHG) emissions. Aviation contributes to 12% of the transport related emissions. Among other climate change impacts, elevated heat exposure is associated with increased cardiac events and exposure to air pollution caused by GHG emissions has also well-known association with increased cardiovascular related morbidity and mortality. The global temperature rise should be restricted to less than 2 °C which requires keeping carbon emission (CO2) less than 2900 billion tonnes by the end of the 21st century. Assuming air travel a major contributing source to GHG, this study aims to raise the awareness about potential carbon emissions reduction due to air travel of international events like a scientific conference. Purpose Due to the global pandemic of COVID-19, the Preventive cardiology conference 2020 which was planned to be held at Malaga Spain, instead was held in virtual online way. This study aims to calculate the contribution of reduced CO2  emissions in tons due to ESC preventive cardiology conference 2020, which was then held online and air travel of the registered participants was avoided. Methods Anonymized participant registration information was used to determine the country and city of the 949 registered participants of the Preventive Cardiology conference 2020. It is assumed that participants would have travelled from the closest airports from their reported city locations to Malaga airport, Spain. At first, the closest city airports were determined using Google maps and flights information, then the flight emissions (direct and indirect CO2-equivalent emissions) per passenger for the given flight distances were calculated. The CO2 emissions (tons) were calculated for round trips in economy class from the participants of 68 nationalities (excluding 60 participants from Spain as they are assumed to take other modes of transport than airplane). Results In total, 1156.51 tons of CO2  emissions were saved by turning the physical conference into a virtual event. This emission amount is equivalent to the annual CO2 production of 108 people living in high-income countries. Conclusion The pandemic situation has forced us to rethink the necessity of trips by air and has shown us the feasibility of digitally organized events. The information from this study can add to the awareness about reduced amount of carbon emission due to air travel by organizing events in a virtual way when possible. Apart from only digitally organized events there are others options to reduce the carbon footprint of conferences such as limiting the number of physical attendees, encouraging the use of relatively sustainable transport modes for participants from nearby countries (e.g. international trains and use of active transport modes at conference venue etc.) and including CO2 emission offsetting costs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Heikki S. Lehtonen ◽  
Jyrki Aakkula ◽  
Stefan Fronzek ◽  
Janne Helin ◽  
Mikael Hildén ◽  
...  

AbstractShared socioeconomic pathways (SSPs), developed at global scale, comprise narrative descriptions and quantifications of future world developments that are intended for climate change scenario analysis. However, their extension to national and regional scales can be challenging. Here, we present SSP narratives co-developed with stakeholders for the agriculture and food sector in Finland. These are derived from intensive discussions at a workshop attended by approximately 39 participants offering a range of sectoral perspectives. Using general background descriptions of the SSPs for Europe, facilitated discussions were held in parallel for each of four SSPs reflecting very different contexts for the development of the sector up to 2050 and beyond. Discussions focused on five themes from the perspectives of consumers, producers and policy-makers, included a joint final session and allowed for post-workshop feedback. Results reflect careful sector-based, national-level interpretations of the global SSPs from which we have constructed consensus narratives. Our results also show important critical remarks and minority viewpoints. Interesting features of the Finnish narratives compared to the global SSP narratives include greater emphasis on environmental quality; significant land abandonment in SSPs with reduced livestock production and increased plant-based diets; continued need for some farm subsidies across all SSPs and opportunities for diversifying domestic production under scenarios of restricted trade. Our results can contribute to the development of more detailed national long-term scenarios for food and agriculture that are both relevant for local stakeholders and researchers as well as being consistent with global scenarios being applied internationally.


2021 ◽  
Vol 13 (4) ◽  
pp. 1795
Author(s):  
Pedro Dorta Antequera ◽  
Jaime Díaz Pacheco ◽  
Abel López Díez ◽  
Celia Bethencourt Herrera

Many small islands base their economy on tourism. This activity, based to a large extent on the movement of millions of people by air transport, depends on the use of fossil fuels and, therefore, generates a large amount of greenhouse gas (GHG) emissions. In this work, these emissions are evaluated by means of various carbon calculators, taking the Canary Islands as an example, which is one of the most highly developed tourist archipelagos in the world. The result is that more than 6.4 million tonnes (Mt) of CO2 are produced per year exclusively due to the massive transport of tourists over an average distance of more than 3000 km. The relative weight of these emissions is of such magnitude that they are equivalent to more than 50% of the total amount produced by the socioeconomic activity of the archipelago. Although, individually, it is travelers from Russia and Nordic countries who generate the highest carbon footprint due to their greater traveling distance, the British and German tourists account for the greatest weight in the total, with two-thirds of emissions.


2015 ◽  
Vol 30 (6) ◽  
pp. 364
Author(s):  
Amanda S. Gallinat ◽  
Richard B. Primack ◽  
David L. Wagner

2014 ◽  
Vol 122 (3) ◽  
pp. 401-414 ◽  
Author(s):  
Elmar Kriegler ◽  
Jae Edmonds ◽  
Stéphane Hallegatte ◽  
Kristie L. Ebi ◽  
Tom Kram ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document