scholarly journals There is a silver lining: carbon footprint reduction by holding Preventive Cardiology conference 2020 virtually

2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
T Batool ◽  
A Neven ◽  
Y Vanrompay ◽  
M Adnan ◽  
P Dendale

Abstract Funding Acknowledgements Type of funding sources: Other. Main funding source(s): Special Research Fund (BOF), Hasselt University Introduction The transportation sector is one of the major sectors influencing climate change, contributing around 16% of total Greenhouse gases (GHG) emissions. Aviation contributes to 12% of the transport related emissions. Among other climate change impacts, elevated heat exposure is associated with increased cardiac events and exposure to air pollution caused by GHG emissions has also well-known association with increased cardiovascular related morbidity and mortality. The global temperature rise should be restricted to less than 2 °C which requires keeping carbon emission (CO2) less than 2900 billion tonnes by the end of the 21st century. Assuming air travel a major contributing source to GHG, this study aims to raise the awareness about potential carbon emissions reduction due to air travel of international events like a scientific conference. Purpose Due to the global pandemic of COVID-19, the Preventive cardiology conference 2020 which was planned to be held at Malaga Spain, instead was held in virtual online way. This study aims to calculate the contribution of reduced CO2  emissions in tons due to ESC preventive cardiology conference 2020, which was then held online and air travel of the registered participants was avoided. Methods Anonymized participant registration information was used to determine the country and city of the 949 registered participants of the Preventive Cardiology conference 2020. It is assumed that participants would have travelled from the closest airports from their reported city locations to Malaga airport, Spain. At first, the closest city airports were determined using Google maps and flights information, then the flight emissions (direct and indirect CO2-equivalent emissions) per passenger for the given flight distances were calculated. The CO2 emissions (tons) were calculated for round trips in economy class from the participants of 68 nationalities (excluding 60 participants from Spain as they are assumed to take other modes of transport than airplane). Results In total, 1156.51 tons of CO2  emissions were saved by turning the physical conference into a virtual event. This emission amount is equivalent to the annual CO2 production of 108 people living in high-income countries. Conclusion The pandemic situation has forced us to rethink the necessity of trips by air and has shown us the feasibility of digitally organized events. The information from this study can add to the awareness about reduced amount of carbon emission due to air travel by organizing events in a virtual way when possible. Apart from only digitally organized events there are others options to reduce the carbon footprint of conferences such as limiting the number of physical attendees, encouraging the use of relatively sustainable transport modes for participants from nearby countries (e.g. international trains and use of active transport modes at conference venue etc.) and including CO2 emission offsetting costs.

2021 ◽  
Vol 13 (4) ◽  
pp. 1795
Author(s):  
Pedro Dorta Antequera ◽  
Jaime Díaz Pacheco ◽  
Abel López Díez ◽  
Celia Bethencourt Herrera

Many small islands base their economy on tourism. This activity, based to a large extent on the movement of millions of people by air transport, depends on the use of fossil fuels and, therefore, generates a large amount of greenhouse gas (GHG) emissions. In this work, these emissions are evaluated by means of various carbon calculators, taking the Canary Islands as an example, which is one of the most highly developed tourist archipelagos in the world. The result is that more than 6.4 million tonnes (Mt) of CO2 are produced per year exclusively due to the massive transport of tourists over an average distance of more than 3000 km. The relative weight of these emissions is of such magnitude that they are equivalent to more than 50% of the total amount produced by the socioeconomic activity of the archipelago. Although, individually, it is travelers from Russia and Nordic countries who generate the highest carbon footprint due to their greater traveling distance, the British and German tourists account for the greatest weight in the total, with two-thirds of emissions.


Due to manufactured technology enchantment the living being has much convenience and luxury. Though, at the same time, our current existence is doing damage to the environment. Like water pollution, air pollution and Carbon dioxide (CO2) emissions on so forth. But CO2 emissions are the one of the major reason polluting the environment. Furthermost of what we utilise in our daily life lead to emitting CO2 into the environment. Due to this it leads to global warming and climate change problems. Therefore, carbon auditing (Carbon Footprint Analysis) is the first essential step to review the use of energy, to improve energy conservation and to allow building to go green. For this reason we need carbon audit to reduce usage raw materials, waste generation so on so forth to minimise GHG emissions .“CARBON AUDIT” is conducted within the building’s boundary which includes the following stages:- People Survey to gather employee-level data, Building Survey to gather building-operation data, Carbon Footprint Analysis to evaluate the greenhouse gas (GHG) emission and Final Carbon Audit Report to provide tailored recommendations for going green along with action plan to get started


2019 ◽  
Vol 9 (2) ◽  
pp. 43 ◽  
Author(s):  
Katundu Imasiku ◽  
Valerie Thomas ◽  
Etienne Ntagwirumugara

Green information technology systems (Green ITS) are proposed as a strategy to reduce greenhouse gases (GHGs) emissions and other environmental impacts while supporting ecological sustainable development. The Green ITS concept combines both Green information technology (IT) and Green information system (IS) applications. The Green ITS concept has the potential to combat the carbon emission problem globally, beyond simply Green IT, because it combines management, organizational, and technology dimensions of climate change mitigation and adaptation, especially if supported by global policy. Examples include life cycle assessment software for measuring GHG emissions, and software for monitoring GHG emissions. Previous studies on environmental burdens such as GHGs, water and air pollution, energy losses and other forms of waste alongside socio-economic dependent variables including renewable resources and climate change policies are reviewed and synthesized. The research analysis conjointly points to the usage of renewable resources such as solar and wind as a critical strategy to scale back GHG emissions and enhance green growth. Empirical evidence shows that developed countries can reduce their carbon emissions while developing countries can utilize carbon emission-free technologies as they aspire to achieve development. The two significant benefits of the Green ITS strategy are first, to provide the environmental benefits of reducing greenhouse emissions and other environmental impacts and second, to enhance global green growth, which supports achievement of ecological sustainable development. Green ITS tools support achievement of the UN SDG 7, 13 and 15, which emphasize clean energy, climate action and ecological sustainable development, respectively. Future research directions include the formulation of a strategy to combat GHGs and design of a system to monitor carbon emissions and other waste remotely.


2018 ◽  
Vol 10 (8) ◽  
pp. 2715 ◽  
Author(s):  
Alejandro Padilla-Rivera ◽  
Ben Amor ◽  
Pierre Blanchet

The design and study of low carbon buildings is a major concern in a modern economy due to high carbon emissions produced by buildings and its effects on climate change. Studies have investigated (CFP) Carbon Footprint of buildings, but there remains a need for a strong analysis that measure and quantify the overall degree of GHG emissions reductions and its relationship with the effect on climate change mitigation. This study evaluates the potential of reducing greenhouse gas (GHG) emissions from the building sector by evaluating the (CFP) of four hotpots approaches defined in line with commonly carbon reduction strategies, also known as mitigation strategies. CFP framework is applied to compare the (CC) climate change impact of mitigation strategies. A multi-story timber residential construction in Quebec City (Canada) was chosen as a baseline scenario. This building has been designed with the idea of being a reference of sustainable development application in the building sector. In this scenario, the production of materials and construction (assembly, waste management and transportation) were evaluated. A CFP that covers eight actions divided in four low carbon strategies, including: low carbon materials, material minimization, reuse and recycle materials and adoption of local sources and use of biofuels were evaluated. The results of this study shows that the used of prefabricated technique in buildings is an alternative to reduce the CFP of buildings in the context of Quebec. The CC decreases per m2 floor area in baseline scenario is up to 25% than current buildings. If the benefits of low carbon strategies are included, the timber structures can generate 38% lower CC than the original baseline scenario. The investigation recommends that CO2eq emissions reduction in the design and implementation of residential constructions as climate change mitigation is perfectly feasible by following different working strategies. It is concluded that if the four strategies were implemented in current buildings they would have environmental benefits by reducing its CFP. The reuse wood wastes into production of particleboard has the greatest environmental benefit due to temporary carbon storage.


Author(s):  
Viktoras Vorobjovas ◽  
Algirdas Motiejunas ◽  
Tomas Ratkevicius ◽  
Alvydas Zagorskis ◽  
Vaidotas Danila

Climate change is one of the main nowadays problem in the world. The politics and strategies for climate change and tools for reduction of greenhouse gas (GHG) emissions and green technologies are created and implemented. Mainly it is focused on energy, transport and construction sectors, which are related and plays a significant role in the roads life cycle. Most of the carbon footprint emissions are generated by transport. The remaining emissions are generated during the road life cycle. Therefore, European and other countries use methods to calculate GHG emissions and evaluate the impact of road construction methods and technologies on the environment. Software tools for calculation GHG emissions are complicated, and it is not entirely clear what GHG emission amounts generate during different stages of road life cycle. Thus, the precision of the obtained results are often dependent on the sources and quantities of data, assumptions, and hypothesis. The use of more accurate and efficient calculation-evaluation methods could let to determine in which stages of road life cycle the largest carbon footprint emissions are generated, what advanced road construction methods and technologies could be used. Also, the road service life could be extended, the consumption of raw materials, repair, and maintenance costs could be reduced. Therefore the time-savings could be improved, and the impact on the environment could be reduced using these GHG calculation-evaluation methods.


Earth ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 111-123
Author(s):  
Bowen He ◽  
Ke J. Ding

The growing impact of CO2 and other greenhouse-gas (GHG) emissions on the socio-climate system in the Western Cape, South Africa, urgently calls for the need for better climate adaptation and emissions-reduction strategies. While the consensus has been that there is a strong correlation between CO2 emissions and the global climate system, few studies on climate change in the Western Cape have quantified the impact of climate change on local climate metrics such as precipitation and evaporation under different future climate scenarios. The present study investigates three different CO2 emissions scenarios: Representative Concentration Pathway (RCP) 2.6, RCP 4.5, and RCP 8.5, from moderate to severe, respectively. Specifically, we used climate metrics including precipitation, daily mean and maximum near-surface air temperature, and evaporation to evaluate the future climate in Western Cape under each different RCP climate scenario. The projected simulation results reveal that temperature-related metrics are more sensitive to CO2 emissions than water-related metrics. Districts closer to the south coast are more resilient to severer GHG emissions scenarios compared to inland areas regarding temperature and rainfall; however, coastal regions are more likely to suffer from severe droughts such as the “Day-Zero” water crisis. As a result, a robust drying signal across the Western Cape region is likely to be seen in the second half of the 21st century, especially under the scenario of RCP 8.5 (business as usual) without efficient emissions reduction policies.


Climate ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 90 ◽  
Author(s):  
Elena Sesana ◽  
Chiara Bertolin ◽  
Alexandre Gagnon ◽  
John Hughes

Climate change mitigation targets have put pressure to reduce the carbon footprint of cultural heritage buildings. Commonly adopted measures to decrease the greenhouse gas (GHG) emissions of historical buildings are targeted at improving their energy efficiency through insulating the building envelope, and upgrading their heating, cooling and lighting systems. However, there are complex issues that arise when mitigating climate change in the cultural built heritage sector. For instance, preserving the authenticity of heritage buildings, maintaining their traditional passive behaviours, and choosing adaptive solutions compatible with the characteristics of heritage materials to avoid an acceleration of decay processes. It is thus important to understand what the enablers, or the barriers, are to reduce the carbon footprint of cultural heritage buildings to meet climate change mitigation targets. This paper investigates how climate change mitigation is considered in the management and preservation of the built heritage through semi-structured interviews with cultural heritage experts from the UK, Italy and Norway. Best-practice approaches for the refurbishment of historical buildings with the aim of decreasing their energy consumption are presented, as perceived by the interviewees, as well as the identification of the enablers and barriers in mitigating climate change in the cultural built heritage sector. The findings emphasise that adapting the cultural built heritage to reduce GHG emissions is challenging, but possible if strong and concerted action involving research and government can be undertaken to overcome the barriers identified in this paper.


2021 ◽  
Vol 13 (4) ◽  
pp. 1750
Author(s):  
Guillermo Filippone ◽  
Rocío Sancho ◽  
Sebastián Labella

As a contribution to the fight against climate change, ESNE’s 2018/19 carbon footprint has been evaluated using the CarbonFeel methodology, based on ISO 14069 standards. In the scenario studied, greenhouse gas (GHG) emissions produced by direct and indirect emissions have been included. For comparative purposes, a second scenario has been analyzed in which fossil fuels used for heating are replaced by electrical energy from renewable sources. A decrease of 28% in GHG emissions has been verified, which could even reach 40% if the energy for thermal conditioning was replaced by renewables.


2019 ◽  
Vol 2 (2) ◽  
pp. 51
Author(s):  
Nurhayat Nurhayat ◽  
Rizki Andre Handika

The existence of Universities that include many human activities for energy consumption such as electrical and fossil fuel energy would be affected to CO2 emission. As the most important component of greenhouse gases (GHG), CO2 will induce global warming, which become climate change condition. This research was intended to predict the amount of CO2 emission from campus activities using International Panel Climate Change (IPCC) method. Location for the research sample was in Faculty of Science and Technology (FST), Pinang Masak Campus of Jambi University, which the carbon emission sources were identified to three scope based on The Greenhouse Gas Protocol. Carbon footprint scope 1 comprises from operational vehicle activities and use of LPG in Canteen in aggregate 12,18 ton.CO2-eq. However, scope 2 comes from the use of electrical which amount to 100,29 ton.CO2-eq and scope 3 which consist of transportation activities and the use of paper by FST lecturers, staff and students with amount 443,64 ton.CO2-eq. Therefore, the total amount of carbon footprint in FST Campus was 556,10 ton.CO2-eq.


2018 ◽  
Vol 3 (3) ◽  
pp. 20-25
Author(s):  
Romiza Md Nor ◽  
Nor Fatin Fazira Abu Bakar

Climate change is one of the major issues that concerned by the global community. Carbon footprint calculation has evolved as one indicator to measure the concentration of the carbon emission release. Carbon footprint is the amount of carbon dioxide released into the atmosphere as the result of human activities. This research investigates the usability of the web application to increase the level of awareness towards carbon emission during paddy production. A web application called Paddy Footprint is developed by using two sustainable web design principles which are more sustainable component and user experience and design. Paddy Footprint allows users to calculate the carbon emission release resulting from the paddy production activities such as rice cultivation, fertilizer application, field burning and fuel consumption. Besides, Paddy Footprint also provides the users with information and knowledge on carbon footprint. Usability testing was conducted to evaluate the level of awareness towards environmental sustainability. The evaluation conducted involved thirty participants. From the findings, it has been discovered that through Paddy Footprint, users can calculate and display the carbon footprint for each activity. It also enhances the knowledge of participants on carbon footprint, which can encourage them to create a small step in reducing it.


Sign in / Sign up

Export Citation Format

Share Document