Overview of the most important models for the soil loss assessment due to water erosion

Geonauka ◽  
2013 ◽  
Vol 01 (03) ◽  
pp. 6-11 ◽  
Author(s):  
Veljko Perović ◽  
Stanimir Kostadinov ◽  
Darko Jaramaz ◽  
Ratko Kadović
2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Alexandra Pagáč Mokrá ◽  
Jakub Pagáč ◽  
Zlatica Muchová ◽  
František Petrovič

Water erosion is a phenomenon that significantly damages agricultural land. The current land fragmentation in Slovakia and the complete ambiguity of who owns it leads to a lack of responsibility to care for the land in its current condition, which could affect its sustainability in the future. The reason so much soil has eroded is obvious when looking at current land management, with large fields, a lack of windbreaks between them, and no barriers to prevent soil runoff. Land consolidation might be the solution. This paper seeks to evaluate redistributed land and, based on modeling by the Universal Soil Loss Equation (USLE) method, to assess the degree of soil erosion risk. Ownership data provided information on how many owners and what amount of area to consider, while taking into account new conditions regarding water erosion. The results indicate that 2488 plots of 1607 owners which represent 12% of the model area are still endangered by water erosion, even after the completion of the land consolidation project. The results also presented a way of evaluating the territory and aims to trigger a discussion regarding an unambiguous definition of responsibility in the relationship between owner and user.


2021 ◽  
Author(s):  
Ivan Dugan ◽  
Leon Josip Telak ◽  
Iva Hrelja ◽  
Ivica Kisić ◽  
Igor Bogunović

&lt;p&gt;&lt;strong&gt;Straw mulch impact on soil properties and initial soil erosion processes in the maize field&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Ivan Dugan*, Leon Josip Telak, Iva Hrelja, Ivica Kisic, Igor Bogunovic&lt;/p&gt;&lt;p&gt;University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia&lt;/p&gt;&lt;p&gt;(*correspondence to Ivan Dugan: [email protected])&lt;/p&gt;&lt;p&gt;Soil erosion by water is the most important cause of land degradation. Previous studies reveal high soil loss in conventionally managed croplands, with recorded soil losses high as 30 t ha&lt;sup&gt;-1&lt;/sup&gt; under wide row cover crop like maize (Kisic et al., 2017; Bogunovic et al., 2018). Therefore, it is necessary to test environmentally-friendly soil conservation practices to mitigate soil erosion. This research aims to define the impacts of mulch and bare soil on soil water erosion in the maize (Zea mays&amp;#160;L.) field in Blagorodovac, Croatia (45&amp;#176;33&amp;#8217;N; 17&amp;#176;01&amp;#8217;E; 132 m a.s.l.). For this research, two treatments on conventionally tilled silty clay loam Stagnosols were established, one was straw mulch (2 t ha&lt;sup&gt;-1&lt;/sup&gt;), while other was bare soil. For purpose of research, ten rainfall simulations and ten sampling points were conducted per each treatment. Simulations were carried out with a rainfall simulator, simulating a rainfall at an intensity of 58 mm h&lt;sup&gt;-1&lt;/sup&gt;, for 30 min, over 0.785 m&lt;sup&gt;2&lt;/sup&gt; plots, to determine runoff and sediment loss. Soil core samples and undisturbed samples were taken in the close vicinity of each plot. The results showed that straw mulch mitigated water runoff (by 192%), sediment loss (by 288%), and sediment concentration (by 560%) in addition to bare treatment. The bare treatment showed a 55% lower infiltration rate. Ponding time was higher (p &lt; 0.05) on mulched plots (102 sec), compared to bare (35 sec), despite the fact that bulk density, water-stable aggregates, water holding capacity, and mean weight diameter did not show any difference (p &gt; 0.05) between treatments. The study results indicate that straw mulch mitigates soil water erosion, because it immediately reduces runoff, and enhances infiltration. On the other side, soil water erosion on bare soil under simulated rainstorms could be high as 5.07 t ha&lt;sup&gt;-1&lt;/sup&gt;, when extrapolated, reached as high as 5.07 t ha&lt;sup&gt;-1 &lt;/sup&gt;in this study. The conventional tillage, without residue cover, was proven as unsustainable agro-technical practice in the study area.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Key words: straw mulch, &lt;/strong&gt;rainfall simulation, soil water erosion&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgment&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;This work was supported by Croatian Science Foundation through the project &quot;Soil erosion and degradation in Croatia&quot; (UIP-2017-05-7834) (SEDCRO).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Literature&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.&lt;/p&gt;&lt;p&gt;Kisic, I., Bogunovic, I., Birk&amp;#225;s, M., Jurisic, A., Spalevic, V. (2017). The role of tillage and crops on a soil loss of an arable Stagnic Luvisol. Archives of Agronomy and Soil Science, 63(3), 403-413.&lt;/p&gt;


2020 ◽  
Vol 13 (3) ◽  
pp. 1117
Author(s):  
Julio Caetano Tomazoni ◽  
Ana Paula Vansan

Este trabalho tem como objetivo avaliar a erosão hídrica laminar do solo, por meio da Equação Universal de Perdas de Solos Revisada (RUSLE) na bacia hidrográfica do rio São José, localizada no município de Francisco Beltrão (PR).  A perda de solo média anual (A) foi determinada através da RUSLE para os anos 2000, 2005, 2009, 2015 e 2017 utilizando-se técnicas de geoprocessamento com o auxílio do software ArcGis 10.0. O fator erosividade da chuva (R) foi determinado utilizando-se dados pluviométricos correspondentes ao período de 1974 a 2016. O fator erodibilidade do solo (K) foi obtido através da análise de amostras de solo coletadas in loco. O fator topográfico (LS) foi estimado por meio dos dados altimétricos e hidrográficos da bacia. Os fatores de uso e manejo do solo (C) e de práticas conservacionistas do solo (P) foram determinados por meio da caracterização multitemporal do uso e ocupação do solo, através de imagens de satélite. O potencial natural de erosão (PNE) foi determinado pela multiplicação dos fatores R, K e LS.A estimativa de perda de solo (A) foi determinada pela multiplicação do PNE pelos fatores C e P.  Use of Geoprocessing Techniques to Study Laminar Water Erosion in Watershed of Southwest Paraná A B S T R A C TThe objective of this work is evaluate the soil erosion by the Universal Equation of Soil Losses Revised (RUSLE) in the São José river basin, located in the municipality of Francisco Beltrão (PR). The average annual soil loss (A) was determined through RUSLE for the years 2000, 2005, 2009, 2015 and 2017 using geoprocessing techniques with ArcGis 10.0 software. Rainfallerosivity (R) was determined using rainfall data from 1974 to 2016, being determined at 11521.26 11521,26 MJ.mm.ha-1.h-1.year-1. The soil erodibility factor (K) was obtained through the analysis of soil samples collected on the spot (0,03018 t.ha.h/ha.MJ.mm, 0,02771 t.ha.h/ha.MJ.mm e 0,02342 t.ha.h/ha.MJ.mm). The topographic factor (LS) was estimated by the altimetric and hydrographic data of the basin. Soil use and management (C) and soil conservation (P) were determined through multitemporal characterization of land use and occupation, using satellite images. The natural erosion potential (NEP) was determined by multiplying the R, K and LS factors, with more than half of the total area of the watershed with very strong PNE. The soil loss estimate (A) was determined by multiplying the NEP by factors C and P with predominance of the class called low (0 to 10 t/ha/year) denoting the reduction of erosion rates through factors C and P, helping to protect the soil from the erosion process.Key words: Soil Erosion; Watershed, Revised Universal Soil Loss Equation, Geoprocessing, Software.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Guilherme Henrique Expedito Lense ◽  
Fernanda Almeida Bócoli ◽  
Rodrigo Santos Moreira ◽  
Ronaldo Luiz Mincato

Water erosion modeling is a fast and accurate way to estimate erosion potential in watersheds. Among the models, we have the Revised Universal Soil Loss Equation (RUSLE) which has a simple structure, low implementation cost and can be used with readily available information, contributing to the planning of soil conservation practices. In this context, the objective of the work was to apply RUSLE to estimate water erosion in the Córrego da Laje watershed affluent directly from the reservoir of the Furnas Hydroelectric Plant, located in the south of Minas Gerais, a region of southeastern Brazil. In this region, water erosion is a serious problem that has caused the silting up of the hydroelectric reservoir and the depreciation of water quality. Soil losses were calculated in Geographic Information System based on topographic, edaphoclimatic characteristics, soil cover, and management practices. The average soil loss of the watershed was 26.80 Mg ha-1 year-1 with the predominance of highintensity erosive rates (> 15 Mg ha-1 year-1). Considering the basin use classes, sediment generation was higher in pasture areas (35.87 Mg ha-1 year-1), and in areas under maize cultivation (32.05 Mg ha-1 year-1). As areas with severe erosion are distributed throughout the watershed, a comprehensive water erosion mitigation plan should be adopted to reduce the environmental damage of the process.


2021 ◽  
Vol 14 (1) ◽  
pp. 332
Author(s):  
Marcelo Divino Ribeiro Pereira ◽  
João Batista Pereira Cabral

A aplicação de modelos matemáticos na análise da perda de solo em bacias hidrográficas ganhou atenção, nos anos de 1960 e 1970, a partir da análise integrada da paisagem. Nesse contexto, a Equação Universal de Perda de Solo (EUPS) se destaca como um dos modelos mais utilizados mundialmente no conhecimento dos processos erosivos e no planejamento ambiental. Diante disso, este estudo tem por objetivo estimar as perdas de solos nas bacias hidrográficas dos córregos Macacão e Mutum, localizadas no município de Palmas (TO). Os resultados demonstram que as áreas estudadas sofreram com um alto poder de erosividade (R) ao longo dos anos 1995 a 2019, com valores entre 12,188 a 12,319 t/ha MJ-1 mm-1. Quanto ao solo, o Neossolo Litólico Distrófico (RLD) apresenta o maior valor de erodibilidade (K), 0,049 t/ha MJ-1 mm-1.No que tange ao fator topográfico (LS), cerca de 80% das áreas das bacias mostram valores de LS considerados baixos, situados entre 0,029 a 1,86, e 1,86 a 4,30. Já para o fator relacionado ao uso e manejo do solo e às práticas conservacionistas (CP), as áreas mais suscetíveis ao processo erosional diz respeito às classes de pastagem e queimadas. Desta forma, observa-se que as classes de erosão hídrica nas bacias são consideradas moderada, grave e muito grave pelo estudo da Food and Agriculture Organization (FAO) de 1984, ainda que represente somente 19% da área da bacia do Macacão e 24% da bacia do Córrego Mutum.  Loss of soil in the high course of hydrographic basins of ribeirões Taquaruçu Grande and Taquaruçuzinho, Palmas (TO) A B S T R A C TThe application of mathematical models in the analysis of soil loss in watersheds gained attention in the 1960s and 1970s from the integrated analysis of the landscape. In this context, the Universal Soil Loss Equation (EUPS) stood out as one of the most used models worldwide in the knowledge of erosion processes and in environmental planning. Therefore, this study aims to estimate soil losses in the hydrographic basins of the Macacão and Mutum streams, located in the municipality of Palmas (TO). The results demonstrate that the studied areas suffered from a high power of erosivity (R) over the years 1995 to 2019, with values between 12.188 to 12.319 t/ha MJ-1 mm-1. As for the soil, the Neosol Litolic Dystrophic (RLD) has the highest erodibility value (K), 0.049 t/ha MJ-1 mm-1. Regarding the topographic factor (LS), about 80% of the basin areas show LS values considered low, situated between 0.029 to 1.86, and 1.86 to 4.30. As for the factor related to the use and management of soil and conservation practices (CP), the areas most susceptible to the erosion process concern the grazing and burning classes. Thus, it is observed that the classes of water erosion in the basins are considered moderate, severe and very severe by the Food and Agriculture Organization (FAO) study of 1984, although it represents only 19% of the area of the Macacão basin and 24% of the Mutum Stream basin.Keywords: Water erosion. Hydrographic basin. USLE. 


2015 ◽  
Vol 75 (4 suppl 2) ◽  
pp. 120-130 ◽  
Author(s):  
C. H. Graça ◽  
F. H. Passig ◽  
A. R. Kelniar ◽  
M. A. Piza ◽  
K. Q. Carvalho ◽  
...  

The multitemporal behavior of soil loss by surface water erosion in the hydrographic basin of the river Mourão in the center-western region of the Paraná state, Brazil, is analyzed. Forecast was based on the application of the Universal Soil Loss Equation (USLE) with the data integration and estimates within an Geography Information System (GIS) environment. Results had shown high mean annual rain erosivity (10,000 MJ.mm.ha–1.h–1.year–1), with great concentration in January and December. As a rule, soils have average erodibilities, exception of Dystroferric Red Latisol (low class) and Dystrophic Red Argisol (high class). Although the topographic factor was high (>20), rates lower than 1 were predominant. Main land uses comprise temporal crops and pasture throughout the years. The watershed showed a natural potential for low surface erosion. When related to usage types, yearly soil loss was also low (<50 ton.ha–1.year–1), with more critical scores that reach rates higher than 150 ton.ha–1.year–1. Soil loss over the years did not provide great distinctions in distribution standards, although it becames rather intensified in some sectors, especially in the center-eastern and southwestern sections of the watershed.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2786 ◽  
Author(s):  
Safwan Mohammed ◽  
Hazem G. Abdo ◽  
Szilard Szabo ◽  
Quoc Bao Pham ◽  
Imre J. Holb ◽  
...  

Soils in the coastal region of Syria (CRoS) are one of the most fragile components of natural ecosystems. However, they are adversely affected by water erosion processes after extreme land cover modifications such as wildfires or intensive agricultural activities. The main goal of this research was to clarify the dynamic interaction between erosion processes and different ecosystem components (inclination, land cover/land use, and rainy storms) along with the vulnerable territory of the CRoS. Experiments were carried out in five different locations using a total of 15 erosion plots. Soil loss and runoff were quantified in each experimental plot, considering different inclinations and land uses (agricultural land (AG), burnt forest (BF), forest/control plot (F)). Observed runoff and soil loss varied greatly according to both inclination and land cover after 750 mm of rainfall (26 events). In the cultivated areas, the average soil water erosion ranged between 0.14 ± 0.07 and 0.74 ± 0.33 kg/m2; in the BF plots, mean soil erosion ranged between 0.03 ± 0.01 and 0.24 ± 0.10 kg/m2. The lowest amount of erosion was recorded in the F plots where the erosion ranged between 0.1 ± 0.001 and 0.07 ± 0.03 kg/m2. Interestingly, the General Linear Model revealed that all factors (i.e., inclination, rainfall and land use) had a significant (p < 0.001) effect on the soil loss. We concluded that human activities greatly influenced soil erosion rates, being higher in the AG lands, followed by BF and F. Therefore, the current study could be very useful to policymakers and planners for proposing immediate conservation or restoration plans in a less studied area which has been shown to be vulnerable to soil erosion processes.


Sign in / Sign up

Export Citation Format

Share Document