A Real-Time Flood Detection System Based on Machine Learning Algorithms with Emphasis on Deep Learning

Author(s):  
Abdirahman Osman Hashi ◽  
Abdullahi Ahmed Abdirahman ◽  
Mohamed Abdirahman Elmi ◽  
Siti Zaiton Mohd Hashi ◽  
Octavio Ernesto Romo Rodriguez
2020 ◽  
Vol 2 (2) ◽  
pp. 317-321
Author(s):  
Mathew G. Pelletier ◽  
Greg A. Holt ◽  
John D. Wanjura

The removal of plastic contamination in cotton lint is an issue of top priority for the U.S. cotton industry. One of the main sources of plastic contamination appearing in marketable cotton bales is plastic used to wrap cotton modules on cotton harvesters. To help mitigate plastic contamination at the gin, automatic inspection systems are needed to detect and control removal systems. Due to significant cost constraints in the U.S. cotton ginning industry, the use of low-cost color cameras for detection of plastic contamination has been successfully adopted. However, some plastics of similar color to background are difficult to detect when utilizing traditional machine learning algorithms. Hence, current detection/removal system designs are not able to remove all plastics and there is still a need for better detection methods. Recent advances in deep learning convolutional neural networks (CNNs) show promise for enabling the use of low-cost color cameras for detection of objects of interest when placed against a background of similar color. They do this by mimicking the human visual detection system, focusing on differences in texture rather than color as the primary detection paradigm. The key to leveraging the CNNs is the development of extensive image datasets required for training. One of the impediments to this methodology is the need for large image datasets where each image must be annotated with bounding boxes that surround each object of interest. As this requirement is labor-intensive, there is significant value in these image datasets. This report details the included image dataset as well as the system design used to collect the images. For acquisition of the image dataset, a prototype detection system was developed and deployed into a commercial cotton gin where images were collected for the duration of the 2018–2019 ginning season. A discussion of the observational impact that the system had on reduction of plastic contamination at the commercial gin, utilizing traditional color-based machine learning algorithms, is also included.


Road crashes are the most common forms of accidents and deaths worldwide, and the significant reasons for these accidents are usually drunken, drowsiness and reckless behaviour of the driver. According to the World Health Organization, road traffic injuries have risen to 1.25 billion worldwide, which makes driver drowsiness detection a major potential area to avert numerous sleep-induced road accidents. This project proposes an idea to detect drowsiness using machine learning algorithms, hence alarming the driver in real-time to prevent a collision. The model uses the Haar Cascade algorithm, along with the OpenCV library to monitor the real-time video of the driver and to detect the eyes of the driver. The system uses the Eye Aspect Ratio (EAR) concept to determine if the eyes are open or closed. We also feed a data-set file consisting of the facial features data-points to train the machine learning algorithm. The model inspects each frame of the video, which helps to recognize the state of the driver. Furthermore, a Raspberry Pi single-board computer, combined with a camera module and an alarm system, facilitates the project to emulate a compact drowsiness detection system suitable for different automobiles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rajat Garg ◽  
Anil Kumar ◽  
Nikunj Bansal ◽  
Manish Prateek ◽  
Shashi Kumar

AbstractUrban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199029
Author(s):  
Rani Ahmad

Background The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community. Purpose To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques. Material and Methods Studies published in 2010–2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables. Results The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005). Conclusion Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5953 ◽  
Author(s):  
Parastoo Alinia ◽  
Ali Samadani ◽  
Mladen Milosevic ◽  
Hassan Ghasemzadeh ◽  
Saman Parvaneh

Automated lying-posture tracking is important in preventing bed-related disorders, such as pressure injuries, sleep apnea, and lower-back pain. Prior research studied in-bed lying posture tracking using sensors of different modalities (e.g., accelerometer and pressure sensors). However, there remain significant gaps in research regarding how to design efficient in-bed lying posture tracking systems. These gaps can be articulated through several research questions, as follows. First, can we design a single-sensor, pervasive, and inexpensive system that can accurately detect lying postures? Second, what computational models are most effective in the accurate detection of lying postures? Finally, what physical configuration of the sensor system is most effective for lying posture tracking? To answer these important research questions, in this article we propose a comprehensive approach for designing a sensor system that uses a single accelerometer along with machine learning algorithms for in-bed lying posture classification. We design two categories of machine learning algorithms based on deep learning and traditional classification with handcrafted features to detect lying postures. We also investigate what wearing sites are the most effective in the accurate detection of lying postures. We extensively evaluate the performance of the proposed algorithms on nine different body locations and four human lying postures using two datasets. Our results show that a system with a single accelerometer can be used with either deep learning or traditional classifiers to accurately detect lying postures. The best models in our approach achieve an F1 score that ranges from 95.2% to 97.8% with a coefficient of variation from 0.03 to 0.05. The results also identify the thighs and chest as the most salient body sites for lying posture tracking. Our findings in this article suggest that, because accelerometers are ubiquitous and inexpensive sensors, they can be a viable source of information for pervasive monitoring of in-bed postures.


Sign in / Sign up

Export Citation Format

Share Document