BOND STRENGTH RECOVERY OF FIRE-DAMAGED CONCRETE AFTER POST-FIRE-CURING

Author(s):  
Zhuguo Li ◽  
Yasuhiro Ryuda

The effects of post-fire-curing on the bond strength recovery of fire-damaged concrete were investigated in this study. Normal strength concrete (NSC) and high-strength concrete (HSC) specimens with deformed steel bars were prepared respectively. We measured the bond strength of unheated NSC and HSC, and exposed other NSC and HSC specimens to high temperatures of 300℃, 400℃, and 500℃, respectively for 120 minutes. Following by rapid cooling with water, the bond strengths of heated NSC and HSC were measured instantly without re-curing, the remains were cured in water for 28 days, or further in the air of 20℃, 60% R.H. for 56 ~62 days. After the re-curing, the pull-out tests were conducted. The test results indicate that the post-fire-curing contributes to a substantial bond strength recovery of heated concrete. The longer the re-curing in water, the greater the recovery extent. At 90 days of re-curing age, the bond strength rose up to around 77% for NSC, and around 70% for HSC, respectively.

2002 ◽  
Vol 29 (2) ◽  
pp. 191-200 ◽  
Author(s):  
M Alavi-Fard ◽  
H Marzouk

Structures located in seismic zones require significant ductility. It is necessary to examine the bond slip characteristics of high strength concrete under cyclic loading. The cyclic bond of high strength concrete is investigated under different parameters, including load history, confining reinforcement, bar diameter, concrete strength, and the rate of pull out. The bond strength, cracking, and deformation are highly dependent on the bond slip behavior between the rebar and the concrete under cyclic loading. The results of cyclic testing indicate that an increase in cyclic displacement will lead to more severe bond damage. The slope of the bond stress – displacement curve can describe the influence of the rate of loading on the bond strength in a cyclic test. Specimens with steel confinement sustained a greater number of cycles than the specimens without steel confinement. It has been found that the maximum bond strength increases with an increase in concrete strength. Cyclic loading does not affect the bond strength of high strength concrete as long as the cyclic slip is less than the maximum slip for monotonic loading. The behavior of high strength concrete under a cyclic load is slightly different from that of normal strength concrete.Key words: bond, high strength, cyclic loading, bar spacing, loading rate, failure mechanism.


2017 ◽  
Vol 747 ◽  
pp. 319-325 ◽  
Author(s):  
Matteo Maragna ◽  
Cristina Gentilini ◽  
Giovanni Castellazzi ◽  
Christian Carloni

In this paper, the preliminary results of a series of pull-out tests conducted on mortar cylinders with embedded bars are presented. The bars are made of high strength stainless steel and are of helical shape to increase mechanical interlocking with the surrounding mortar. Usually, such bars are employed in situ to realize structural repointing in the case of fair-faced masonry walls. To this aim, they are inserted in the mortar bed joints of masonry for providing tensile strength to the walls and with the function of crack stitching. The aim of the present experimental tests is to determine the bond-slip relationship for bars embedded in masonry. Firstly, pull-out tests are conducted on mortar cylinders considering different embedded lengths of the bars. Further tests are on-going on masonry specimens with bars embedded in the mortar joints. An analytical investigation is also carried out for the interpretation of the pull-out test results.


2000 ◽  
Vol 3 (3) ◽  
pp. 245-253 ◽  
Author(s):  
P. Mendis ◽  
C. French

The use of high-strength concrete is becoming popular around the world. The american code, ACI 318–95 is used in many countries to calculate the development length of deformed bars in tension. However, current design provisions of ACI 318–95 are based on empirical relationships developed from tests on normal strength concrete. The results of a series of tests on high-strength concrete, reported in the literature, from six research studies are used to review the existing recommendations in ACI 318–95 for design of splices and anchorage of reinforcement. It is shown that ACI 318–95 equations may be unconservative for some cases beyond 62 MPa (9 ksi).


2019 ◽  
Vol 23 (4) ◽  
pp. 614-629
Author(s):  
Shaohua Zhang ◽  
Xizhi Zhang ◽  
Shengbo Xu ◽  
Xingqian Li

This study reports the cyclic loading test results of normal-strength concrete-filled precast high-strength concrete centrifugal tube columns. Seven half-scale column specimens were tested under cyclic loads and axial compression loads to investigate their seismic behavior. The major parameters considered in the test included axial compression ratio, filled concrete strength, and volumetric stirrup ratio. The structural behavior of each specimen was investigated in terms of failure modes, hysteresis behavior, bearing capacity, dissipated energy, ductility, stiffness degradation, drift capacity, and strain profiles. Test results revealed that the concrete-filled precast high-strength concrete centrifugal tube column exhibited good integral behavior, and the failure modes of all columns were ductile flexural failures. Lower axial compression ratio and higher volumetric stirrup ratio resulted in more satisfactory ductile performance. In contrast, the filled concrete strength has a limited influence on the structural behavior of concrete-filled precast high-strength concrete centrifugal tube columns. Based on the limit analysis method, the calculation formula for the bending capacity of the concrete-filled precast high-strength concrete centrifugal tube column was developed, and the results predicted from the formulas were in good agreement with the experiment results.


2021 ◽  
Vol 11 (4) ◽  
pp. 56-69
Author(s):  
Retno Anggraini ◽  
Tavio Tavio ◽  
Gusti Putu Raka ◽  
Agustiar Agustiar

High-strength steel bars have different characteristics from normal-strength steel bars. Thus, the use of high-strength steel bars still needs to be investigated further before it can be used confidently in concrete structures. In the design, a reinforced concrete beam should also have enough ductility besides its loading capacity. One of the indicators identifies that a structure has sufficient ductility is its ability to maintain the load steadily due to progressive deformation. This paper presents the test results of three reinforced concrete beams designed with concrete strength (fc) of 30 MPa. Two different yield strengths (fy) of longitudinal and transverse reinforcements were used, namely, 420 and 550 MPa. The cross-sectional dimensions of the beams were 200  300 mm with a total span of 2000 mm and a rigid stub at the midspan. The beams were simply supported by double rollers at their tops and bottoms. These special supports were located at both ends of the beams. The load applied at the midspan of the beam through the rigid stub with the displacement control. The loading pattern protocol by the drift was set from 0 to 5.5 percent. Based on the test results, it can be seen that the beams with high-strength steel bars could achieve a higher load capacity than the beams with normal-strength steel bars. On the other hand, the beams with high-strength steel bars produced lower deflection than the beams with normal-strength steel bars. Furthermore, it can be concluded that all the beams could withstand the minimum required of 3.5 percent. None of the beams indicated brittle failures. All of the beams could survived until the end of the cycles at a drift of 5.5 percent. This condition indicates that the reinforced concrete beams with higher-strength reinforcement (fy of 550 MPa) could also maintain their load capacities under large deformation beyond the first yielding of the longitudinal steel bars.


2011 ◽  
Vol 39 (4) ◽  
pp. 681-696
Author(s):  
Aly Abdel-Zaher ELsayed ◽  
Hosny M. Soghair ◽  
Mohamed M. Rashwan ◽  
Ali Mohamed Abdallah Abou-Zied

2015 ◽  
Vol 665 ◽  
pp. 41-44
Author(s):  
B.I. Bae ◽  
Hyun Ki Choi ◽  
Chang Sik Choi

In order to design reinforced concrete member using steel fiber ultra high strength concrete, current structural design methods should be re-evaluated because it has significant difference in material characteristics compared with normal concrete. In this study, bond strength of steel fiber reinforced ultra-high strength concrete was evaluated. For this purpose, direct pull out test specimens were constructed with variables of cover thickness, compressive strength of matrix and fiber inclusion ratio. According to the test, bond strength were sensitively varied with cover thickness and fiber inclusion. Because bond strength was determined by tensile strength of concrete. Comparing test results with theoretical methods suggested by Tepfers, specimens without steel fiber show good agreement with analytical method, because this method were based on elasticity. And other empirical equations were evaluated with other previous researches.


Author(s):  
Theresa M. Ahlborn ◽  
Timothy C. DenHartigh

Concrete bridge decks in corrosive environments have used several methods to prevent corrosion of the reinforcing steel including the use of alternative steels as reinforcement. While research has been conducted on corrosion resistance, very little information is available about the bond strength of alternative metallic reinforcement such as solid stainless steels and high-strength, high-chromium (HSHC) alloys. Therefore, the tensile bond strengths of three alternative metallic steel reinforcements in concrete are compared with conventional A615 Grade 60 steel reinforcement. Two types of stainless steel were considered, 316LN and 2205 duplex. An HSHC microcomposite bar was also considered. A total of 250 bond tests were performed with beam-end specimens similar to the ASTM A944 specimen. Bonded lengths of 4 to 12 in. were used for No. 4 and No. 6 reinforcing bars. Concrete clear cover for all tests was 1½ in. to produce cracking bond failure. No transverse reinforcement was present. The normal strength concrete was typical of that used in Michigan bridge decks. Statistical comparisons of bond test results with predicted values for bond strength of A615 reinforcement revealed there was no reason to believe the bond strength of the alternative metallic reinforcing bars was less than predicted. The conservatism of the current development-length relationships generally predicted lower bond strengths than were observed. Therefore, no modifications are suggested when estimating the development length of these reinforcements as a one-to-one replacement for A615 Grade 60 reinforcement, No. 4 to No. 6 bars, using standard development-length relationships.


Sign in / Sign up

Export Citation Format

Share Document