scholarly journals A Global Optimization Algorithm for Unconstrained Non-linear Optimization Problems Using Chaotic Neuron Map and Golden Number

Webology ◽  
2021 ◽  
Vol 18 (Special Issue 05) ◽  
pp. 1118-1136
Author(s):  
G. Sandhya Rani ◽  
Sarada Jayan

This paper presents aninnovative global multi-variable optimization algorithm using one of the best chaotic sequences, the neuron map, a description of which is also provided in the paper. The algorithm uses neuron map in the first stage to move near the global minimum point, as well as in each iteration of the second stage of local search that is done using the N-dimensional golden section search algorithm. The generation and mapping of the neuron variables to the optimization variables along with the stagewise search for the global minimum is explained conscientiously in the work. Numerical results on some benchmark functions and the comparison with a latest state-of-the-art algorithm ispresented in order to demonstrate the efficiency of the proposed algorithm.

VLSI Design ◽  
1995 ◽  
Vol 3 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Xiao-Dong Wang ◽  
Tom Chen

A new performance and area optimization algorithm for complex VLSI systems is presented. It is widely believed within the VLSI CAD community that the relationship between delay and silicon area of a VLSI chip is convex. This conclusion is based on a simplified linear RC model to predict gate delays. In the proposed optimization algorithm, a nonlinear, non-RC based transistor delay model was used which resulted in a non-convex relationship between the delay and the silicon area of a VLSI chip. Genetic algorithms are better suited for discrete, non-convex, non-linear optimization problems than traditional calculus-based algorithms. By using the genetic algorithms in the performance and area optimization, we are able to find the optimal values for both delay and silicon area for the ISCAS benchmark circuits.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yongliang Yuan ◽  
Shuo Wang ◽  
Liye Lv ◽  
Xueguan Song

Purpose Highly non-linear optimization problems exist in many practical engineering applications. To deal with these problems, this study aims to propose an improved optimization algorithm, named, adaptive resistance and stamina strategy-based dragonfly algorithm (ARSSDA). Design/methodology/approach To speed up the convergence, ARSSDA applies an adaptive resistance and stamina strategy (ARSS) to conventional dragonfly algorithm so that the search step can be adjusted appropriately in each iteration. In ARSS, it includes the air resistance and physical stamina of dragonfly during a flight. These parameters can be updated in real time as the flight status of the dragonflies. Findings The performance of ARSSDA is verified by 30 benchmark functions of Congress on Evolutionary Computation 2014’s special session and 3 well-known constrained engineering problems. Results reveal that ARSSDA is a competitive algorithm for solving the optimization problems. Further, ARSSDA is used to search the optimal parameters for a bucket wheel reclaimer (BWR). The aim of the numerical experiment is to achieve the global optimal structure of the BWR by minimizing the energy consumption. Results indicate that ARSSDA generates an optimal structure of BWR and decreases the energy consumption by 22.428% compared with the initial design. Originality/value A novel search strategy is proposed to enhance the global exploratory capability and convergence speed. This paper provides an effective optimization algorithm for solving constrained optimization problems.


2021 ◽  
Vol 11 (3) ◽  
pp. 1286 ◽  
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Ali Dehghani ◽  
Om P. Malik ◽  
Ruben Morales-Menendez ◽  
...  

One of the most powerful tools for solving optimization problems is optimization algorithms (inspired by nature) based on populations. These algorithms provide a solution to a problem by randomly searching in the search space. The design’s central idea is derived from various natural phenomena, the behavior and living conditions of living organisms, laws of physics, etc. A new population-based optimization algorithm called the Binary Spring Search Algorithm (BSSA) is introduced to solve optimization problems. BSSA is an algorithm based on a simulation of the famous Hooke’s law (physics) for the traditional weights and springs system. In this proposal, the population comprises weights that are connected by unique springs. The mathematical modeling of the proposed algorithm is presented to be used to achieve solutions to optimization problems. The results were thoroughly validated in different unimodal and multimodal functions; additionally, the BSSA was compared with high-performance algorithms: binary grasshopper optimization algorithm, binary dragonfly algorithm, binary bat algorithm, binary gravitational search algorithm, binary particle swarm optimization, and binary genetic algorithm. The results show the superiority of the BSSA. The results of the Friedman test corroborate that the BSSA is more competitive.


2021 ◽  
Vol 11 (10) ◽  
pp. 4382
Author(s):  
Ali Sadeghi ◽  
Sajjad Amiri Doumari ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Pavel Trojovský ◽  
...  

Optimization is the science that presents a solution among the available solutions considering an optimization problem’s limitations. Optimization algorithms have been introduced as efficient tools for solving optimization problems. These algorithms are designed based on various natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is introduced to solve various optimization problems. In GBGBO, population members update under the influence of two groups named the good group and the bad group. The good group consists of a certain number of the population members with better fitness function than other members and the bad group consists of a number of the population members with worse fitness function than other members of the population. GBGBO is mathematically modeled and its performance in solving optimization problems was tested on a set of twenty-three different objective functions. In addition, for further analysis, the results obtained from the proposed algorithm were compared with eight optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO), and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine predators algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to solve various optimization problems and is more competitive than other similar algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


Sign in / Sign up

Export Citation Format

Share Document