scholarly journals A novel P&OT-Neville’s interpolation MPPT scheme for maximum PV system energy extraction

2018 ◽  
Vol 7 (3) ◽  
pp. 251
Author(s):  
Muralidhar Nayak Bhukya ◽  
Venkata Reddy Kota

Photovoltaic (PV) system posses an optimal operating pointing, termed as Maximum Power Point (MPP). Using Maximum Power Point Tracking (MPPT) algorithm, MPP of PV system has to be tracked continuously in any climatic conditions. In general, traditional Perturb and Observe (P&OT) MPP tracker is widely used among existing controllers. But, P&OT fails to harvest maximum power from solar panel, in addition oscillations around MPP results in low efficiency of the PV system. The contradiction involved in the traditional controller can be addressed as P&OT operates with a fixed step size. Hence, with large step size MPP can be reached quickly but the magnitude of oscillations around MPP are high. Similarly, when P&OT operated with tiny step size magnitude of oscillations can be reduced at the same time PV system consumes much time to reach MPP. In order to eliminate the contradiction involved with traditional MPPT scheme and effectively optimize PV system energy, this paper put forwards a hybrid MPPT scheme based on P&OT and Neville interpolation. The proposed scheme is executed in two stages. In the first stage, P&OT is operated with a large step size till the voltage reaches near to maximum point. In the second stage, Neville interpolation is used to find the maximum power point. The performance of the proposed scheme is compared with Golden Section Search (GSS) and P&OT MPPT controllers. With the proposed scheme the convergence time required to reach MPP is improved greatly. Experimental prototype is designed and developed to verify the performance of the proposed scheme. Experimental and simulation results provide enough evidence to show superiority of the proposed scheme.Article History: Received December 15th 2017; Received in revised form July 16th 2018; Accepted September 12th 2018; Available onlineHow to Cite This Article: Bhukya, M. N. and Kota, V. R. (2018) A Novel PandOT-Neville’s Interpolation MPPT Scheme for Maximum PV system energy extraction. International Journal of Renewable Energy Development, 7(3), 251-262https://dx.doi.org/10.14710/ijred.7.3.251-26

2018 ◽  
Vol 7 (3) ◽  
pp. 251-260 ◽  
Author(s):  
Muralidhar Nayak Bhukya ◽  
Venkata Reddy Kota

Photovoltaic (PV) system posses an optimal operating pointing, termed as Maximum Power Point (MPP). Using Maximum Power Point Tracking (MPPT) algorithm, MPP of PV system has to be tracked continuously in any climatic conditions. In general, traditional Perturb and Observe (P&OT) MPP tracker is widely used among existing controllers. But, P&OT fails to harvest maximum power from solar panel, in addition oscillations around MPP results in low efficiency of the PV system. The contradiction involved in the traditional controller can be addressed as P&OT operates with a fixed step size. Hence, with large step size MPP can be reached quickly but the magnitude of oscillations around MPP are high. Similarly, when P&OT operated with tiny step size magnitude of oscillations can be reduced at the same time PV system consumes much time to reach MPP. In order to eliminate the contradiction involved with traditional MPPT scheme and effectively optimize PV system energy, this paper put forwards a hybrid MPPT scheme based on P&OT and Neville interpolation. The proposed scheme is executed in two stages. In the first stage, P&OT is operated with a large step size till the voltage reaches near to maximum point. In the second stage, Neville interpolation is used to find the maximum power point. The performance of the proposed scheme is compared with Golden Section Search (GSS) and P&OT MPPT controllers. With the proposed scheme the convergence time required to reach MPP is improved greatly. Experimental prototype is designed and developed to verify the performance of the proposed scheme. Experimental and simulation results provide enough evidence to show superiority of the proposed scheme.Article History: Received December 15th 2017; Received in revised form July 16th 2018; Accepted September 12th 2018; Available onlineHow to Cite This Article: Bhukya, M. N. and Kota, V. R. (2018) A Novel PandOT-Neville’s Interpolation MPPT Scheme for Maximum PV system energy extraction. International Journal of Renewable Energy Development, 7(3), 251-260https://dx.doi.org/10.14710/ijred.7.3.251-260


2011 ◽  
Vol 480-481 ◽  
pp. 739-744
Author(s):  
Kuei Hsiang Chao ◽  
Yu Hsu Lee

In this paper, a novel incremental conductance (INC) maximum power point tracking (MPPT) method based on extension theory is developed to make full use of photovoltaic (PV) array output power. The proposed method can adjust the step size to track the PV array’s maximum power point (MPP) automatically. Compared with the conventional fixed step size INC method, the presented approach is able to effectively improve the dynamic response and steady state performance of a PV system simultaneously. A theoretical analysis and the design principle of the proposed method are described in detail. Some simulation results are performed to verify the effectiveness of the proposed MPPT method.


2020 ◽  
Vol 12 (24) ◽  
pp. 10310 ◽  
Author(s):  
Abdulaziz Almutairi ◽  
Ahmed G. Abo-Khalil ◽  
Khairy Sayed ◽  
Naif Albagami

The disadvantage of photovoltaic (PV) power generation is that output power decreases due to the presence of clouds or shade. Moreover, it can only be used when the sun is shining. Consequently, there is a need for further active research into the maximum power point tracking (MPPT) technique, which can maximize the power of solar cells. When the solar cell array is partially shaded due to the influence of clouds or buildings, the solar cell characteristic has a number of local maximum power points (LMPPs). Conventional MPPT techniques do not follow the actual maximum power point, namely, the global maximum power point (GMPP), but stay in the LMPP. Therefore, an analysis of the occurrence of multiple LMPPs due to partial shading, as well as a study on the MPPT technique that can trace GMPP, is needed. In order to overcome this obstacle, the grey wolf optimization (GWO) method is proposed in order to track the global maximum power point and to maximize the energy extraction of the PV system. In addition, opposition-based learning is integrated with the GWO to accelerate the MPPT search process and to reduce convergence time. Simultaneously, the DC link voltage is controlled to reduce sudden variations in voltage in the event of transients of solar radiation and/or temperature. Experimental tests are presented to validate the effectiveness of the proposed MPPT method during uniform irradiance and partial shading conditions. The proposed method is compared with the perturbation and observation method.


2019 ◽  
Vol 8 (4) ◽  
pp. 12599-12605

There are different MPPT techniques to track the maximum power point. When a PV system is directly connected to the load the operating point seldom lies in the maximum power point, whereas it lies at some other point. Thus the effective utilization of PV cannot be done. But using MPPT techniques the system is always made to operate at peak point irrespective of any changes in atmospheric condition. The Proposed method gives better result in terms of output power and hence efficiency of the converter. This method is a tradeoff between steady state accuracy and dynamic tracking by using variable step size instead of fixed step size as like P and O method. The system gives very poor performance when connected directly without mppt. An experimental analysis was conducted to validate the effectiveness of the proposed MPPT method. The proposed method was compared with the conventional Perturb and Observance method and was found that for every environmental conditions like, change in irradiance, angle of tilt, shading, soiling, colour filter, mounting the proposed method gives better power output and efficiency than P and O method. Hardware testing is done to analyze the method.


2011 ◽  
Vol 347-353 ◽  
pp. 1044-1048
Author(s):  
Yun Yun Chen ◽  
Jun Ji Wu ◽  
Zhan Feng Ying

Considering the fact that when the cell temperature and solar insolation change rapidly, traditional variable step size(VSS) perturbation and observation(P&O) methods exist the defects that their tracking speed is relatively slow, there is small power oscillation around MPP(Maximum Power Point) and even some of them exist the situation of tracking unsuccessfully. This paper proposes a MPPT(Maximum Power Point Tracing) technology based on adaptive area algorithm. The simulation model of PV system is established by MATLAB. The simulation results show that the proposed method can track the MPP fast and accurately, and ensure the steady state characteristics of PV systems even when the climate conditions change rapidly. It effectively overcomes the defects of traditional variable step size perturbation and observation methods.


2011 ◽  
Vol 383-390 ◽  
pp. 1111-1116
Author(s):  
Yuan Xiao Ling ◽  
Wang Chuang ◽  
Li Shi Jun

In Photovoltaic (PV) system, the output characteristic of PV cell is susceptible to external environment, such as temperature, light radiation etc, and showing obvious nonlinear. Therefore, in order to improve the efficiency of PV system, the maximum power point tracking (MPPT) of PV cell is essential. This paper mainly introduces the simulation of PV cell and the methods commonly used in Maximum Power Point Tracking of PV system. For the perturbation and observation (P&O) method the paper presents a new variable step size algorithm and builds a simulation model. The result shows that the proposed algorithm has a better effect on maximum power point tracking of PV cell.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3083 ◽  
Author(s):  
Mingrui Zhang ◽  
Zheyang Chen ◽  
Li Wei

Photovoltaic (PV) string exhibits complex multiple-peak characteristics under various partial shading conditions (PSC). If the maximum power point tracking cannot be achieved quickly and accurately, it will lead to a large amount of energy loss. Therefore, it has become a hot topic to study a reliable maximum power tracking control algorithm to ensure the PV system can still output maximum power under PSC. This paper proposes an immune firefly algorithm (IFA), which utilizes vaccine data-base to shorten the convergence time, eliminates the influence of bad individuals in time by immune replenishment operation, and reduces the steady-state oscillation by the improving iteration formula. The simulations in static and dynamic environments verify that the immune firefly algorithm can track the maximum power point under various partial shading conditions. Compared with conventional firefly algorithm (FA), IFA has faster convergence speed, and can effectively restrain the oscillation of voltage and power.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Abdelkhalek Chellakhi ◽  
Said El Beid ◽  
Younes Abouelmahjoub

This paper develops and discusses an improved MPPT approach for temperature variation with fast-tracking speed and reduced steady-state oscillation. This MPPT approach can be added to numerous existing MPPT algorithms in order to enhance their tracking accuracy and response time and to reduce the power loss. The improved MPPT method is fast and accurate to follow the maximum power point under critical temperature conditions without increasing the implementation complexity. The simulation results under different scenarios of temperature and insolation were presented to validate the advantages of the proposed method in terms of tracking efficiency and reduction of power loss at dynamic and steady-state conditions. The simulation results obtained when the proposed MPPT technique was added to different MPPT techniques, namely, perturb and observe (P&O), incremental conductance (INC), and modified MPP-Locus method, show significant enhancements of the MPP tracking performances, where the average efficiency of the conventional P&O, INC, and modified MPP-Locus MPPT methods under all scenarios is presented, respectively, as 98.85%, 98.80%, and 98.81%, whereas the average efficiency of the improved P&O, INC, and modified MPP-Locus MPPT methods is 99.18%, 99.06%, and 99.12%, respectively. Furthermore, the convergence time enhancement of the improved approaches over the conventional P&O, INC, and modified MPP-Locus methods is 2.06, 5.25, and 2.57 milliseconds, respectively; besides, the steady-state power oscillations of the conventional P&O, INC, and modified MPP-Locus MPPT methods are 2, 1, and 0.6 watts, but it is neglected in the case of using the improved approaches. In this study, the MATLAB/Simulink software package was selected for the implementation of the whole PV system.


2016 ◽  
Vol 10 (1) ◽  
pp. 118-128 ◽  
Author(s):  
Amjad Ali ◽  
Wuhua Li ◽  
Xiangning He

In order to harvest photovoltaic energy efficiently, several methods exist, yet most of them failed to address the issues related to extract the maximum power under rapidly changing solar irradiance conditions. In conventional incremental conductance, large step size reduces tracking time but oscillation remains around maximum power point (MPP). However, small step size reduces the oscillation but results in slower tracking speed. This paper proposes a simple moving voltage average (SMVA) technique in conjunction with fixed step direct control incremental conductance (INC) maximum power point tracking (MPPT) method in order to reduce the photovoltaic (PV) generated voltage (VPV) fluctuation and power losses under mismatching solar irradiance conditions in distributed PV system. Theoretical analysis and the simulation results revealed that the proposed SMVA technique provides fast and accurate tracking under mismatching irradiance conditions. Also, it significantly improves the voltage stability because of extremely small |dP/dV| around MPP as compared to the conventional fixed step direct control incremental conductance MPPT method. Finally, results show that the proposed method is suitable for distributed PV system under intermittent weather conditions not only in terms of voltage stability but also in overall system efficiency.


Sign in / Sign up

Export Citation Format

Share Document