scholarly journals PERANCANGAN BUCK CONVERTER SEBAGAI PENGATURAN LAJU KECEPATAN MOTOR DC PADA GERAK LONGITUDINAL DAN TRANSVERSAL PROTOTYPE OVERHEAD CRANE

TRANSIENT ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 319
Author(s):  
Iqba Anggiawan ◽  
Tejo Sukmadi ◽  
Mochammad Facta

Crane merupakan alat pendukung pada bidang industri, dalam penerapannya beban yang ditanggung oleh crane beragam, maka diperlukan sebuah sistem dalam mengatur kecepatan kerja crane untuk menyesuaikan jenis barang yang ditanggung. Dalam penelitian ini dilakukan perancangan prototype overhead crane dengan penggerak motor DC magnet permanen CSD80A1-A yang di dioperasikan oleh buck converter. Pengaturan kecepatan putar motor DC magnet permanen sebagai penggerak  prototype overhead crane dilakukan dengan memvariasikan nilai duty cycle pada buck converter. Prototype overhead crane ini dilakukan pengujian dengan variasi tidak dibebani dan dibebani sebesar 5 kg. Berdasarkan hasil pengukuran buck converter, nilai output terendah terjadi pada gerakan forward transversal tidak dibebani dengan duty cycle 60% yang menghasilkan daya keluaran 7,74 watt, kecepatan putar 76,53 rpm, dan torsi 0,96 Nm. Nilai output tertinggi terjadi pada gerakan forward longitudinal dibebani 5 kg dengan duty cycle 90%, yang menghasilkan daya keluaran 24,79 watt, kecepatan putar 80,59 rpm, dan torsi 2,93 Nm.

AIMS Energy ◽  
2015 ◽  
Vol 3 (4) ◽  
pp. 728-739 ◽  
Author(s):  
Rashid Al Badwawi ◽  
◽  
Mohammad Abusara ◽  
Tapas Mallick

2014 ◽  
Vol 536-537 ◽  
pp. 1497-1500
Author(s):  
Fang Ying Zhang ◽  
Wei Hu ◽  
Xiao Li Long ◽  
Xin Bing Chen

This paper analyzes the effect of stable behaviors when amplitude, phase of sine voltage compensation signal are added in the system, reveals that the dynamical behaviors mechanism that sine voltage compensation signal changes feedback voltage-mode controlled buck converter lies in changing the duty cycle without impacting the system stable error via analyzing the change of period multiplier in Monodromy matrix and conditions of period bifurcation, and finally achieves stabilization control for bifurcation and chaotic behaviors. The simulation and experimental results prove the correctness of the theoretical analysis.


Author(s):  
Cosmas Tatenda Katsambe ◽  
Vinukumar Luckose ◽  
Nurul Shahrizan Shahabuddin

Pulse width modulation (PWM) is used to generate pulses with variable duty cycle rate. The rapid rising and falling edges of PWM signal minimises the switching transition time and the associated switching losses. This paper presents a DC motor speed controller system using PWM technique. The PWM duty cycle is used to vary the speed of the motor by controlling the motor terminal voltage.The motor voltage and revolutions per minutes (RPM) obtained at different duty cycle rates. As the duty cycle increases, more voltage is applied to the motor. This contributes to the stronger magnetic flux inside the armature windings and the increasethe RPM. The characteristics and performance of the DC motor speed control system was investigated. In this paper, a PIC microcontroller and a DC-DC buck converter are employed in the DC motor speed controller system circuit. The microcontroller provides flexibility to the circuit by incorporating two push button switches in order to increase and to decrease the duty cycle rate. The characteristics and performance of the motor speed controller system using microcontroller was examined at different duty cycle rate ranging from 19% to 99%.


2018 ◽  
Vol 43 ◽  
pp. 01009
Author(s):  
Sutedjo ◽  
Ony Asrarul Qudsi ◽  
Andi Ardianto ◽  
Diah Septi Yanaratri ◽  
Suhariningsih ◽  
...  

This paper presents the details of design and implementation of DC-DC Buck converter as solar charger. This converter is designed for charging a battery with a capacity of 100 Ah (Ampere Hours) which has a charging voltage of 27.4 volts. The constant voltage method is selected on battery charging with the specified set point. To ensure the charging voltage is always on the set point, the duty cycle control of buck converter is set using Fuzzy Logic Control (FLC). The design implementation has been tested on PV (photovoltaic) with 540WP capacity. Based on the test results, this method is quite well implemented on the problem charger


2019 ◽  
Vol 27 (2) ◽  
pp. 194-206
Author(s):  
Ismael Khaleel Murad

In this paper both synchronous and asynchronous buck-converter were designed to work in continuous conduction mode “CCM” and to deliver small load current. Then the two topologies were tested in terms of efficiency at small load current by use of  different values of switching frequencies (range from 150 KHz to 1MHz) and three separated values of duty-cycle (0.4, 0.6 and 0.8).   Obtained results turns out that efficiency of both synchronous and asynchronous buck-converter “switching step-down voltage regulator” responds in a negative manner to the increase in the switching frequency. However, this impact is being stronger in synchronous topology because of magnifying effect of losses related to switching frequency compared to those related to conduction when working at small load currents; this behavior makes obtained efficiency of both topologies in convergent levels when they operated to deliver small output current especially when working with higher switching frequencies. Larger duty-cycle can rise up the efficiency of both topologies.


2021 ◽  
Vol 2 (2) ◽  
pp. 148-154
Author(s):  
Mohammed Abdul Aziz Alhaqeem ◽  
Aswardi Aswardi

Pada era teknologi yang semakin berkembang pesat, penggunaan elektronika daya semakin banyak digunakan seperti untuk penggontrolan motor dan lain – lain. Untuk mendukung semua itu tentu juga di iringi dengan metode – metode interfacing yang memudahkan user dalam penggunaaan alat – alat elektronika daya seperti contohnya buck conveter. Interfacing yang di maksud disini adalah dengan melakukan pengaturan keluaran buck converter dengan menggunakan interfacing pada personal computer sekaligus memonitoringnya. Buck converter adalah jenis dc-dc converter yang berfungsi untuk mengubah keluaran tegangan output lebh kecil dibandingkan dengan tegangan keluaran input. Perancangan monitoring menggunakan visual basic dalam pembuatan interfacing, hal ini dilakukan karena kemudahan komunikasi antara visual basic dengan arduino. Metode pengontrolan menggunakan pengaturan duty cycle yang diberikan dari visual basic ke arduino. Dengan mengatur duty cycle, maka tegangan yang dkeluarkan pun akan berubah-ubah. Berdasarkan hasil pengujiaan, maka dengan memperbesar duty cycle maka keluaran tegangan dari buck converter akan semakin kecil, Dengan hasil pengukuran buck converter pada input tegangan 24 volt dan duty 15.97 menghasilkan tegangan keluaran sebesar 19,5 sedangkan pada duty cycle 34.57 menghasilkan tegangan sebesar 13.9.


2020 ◽  
Vol 8 (1) ◽  
pp. 26-33
Author(s):  
Hilmansyah Hilmansyah ◽  
Restu Mukti Utomo

DC – DC converter banyak diplikasikan pada renewable energy, sel surya, sistem pengecasan baterai dan mobil listrik. Salah satu metode pada DC – DC converter adalah buck converter. Pada buck converter, tegangan keluaran lebih kecil dari tengangan masukkannya. Pada paper ini, buck converter didesain menggunakan microcontroller STM32F4 berbasis MATLAB/Simulink, TLP521 sebagai pengaman rangkaian daya buck converter dan rangkaian kendali STM32F4, IGBT FGH75T65UPD sebagai komponen switching, dan IR 2111 yang berfungsi sebagai gate driver untuk IGBT. Penanaman program STM32F4 dari MATLAB/Simulink menggunakan waijung blockset. Tegangan masukan pada buck converter didesain sebesar 35 V dengan tegangan keluaran sebesar 3,5 V sampai dengan 31,5 V dengan frekuensi switching pada IGBT maksimum sebesar 100 kHz. Data pada hasil eksperimen menunjukkan bahwa perubahan pada duty cycle akan berpengaruh pada tegangan keluaran, arus keluaran dan effisiensi dari buck converter.


Author(s):  
Abdul Rahman Wachid ◽  
Endro Wahjono ◽  
Syechu Dwitya Nugraha Nugraha

Dalam makalah ini didesain dan disimulasikan dual input single output buck converter dengan kontrol fuzzy untuk suplai beban DC dengan menggunakan software PSIM. Dual input single output converter dapat bekerja dengan dua sumber yang berbeda. Penggunaan dua sumber dari panel surya dan turbin angin adalah cara alternatif untuk mendapatkan nilai daya output yang lebih besar untuk suplai beban DC. Sumber dari panel surya dan turbin angin akan masuk ke dalam sistem rangkaian dual input buck converter secara bersamaan dengan kondisi sumber terpasang secara seri. Agar kedua sumber dapat bekerja secara bersamaan, duty cycle diatur menggunakan kontrol fuzzy sehingga tegangan output sesuai dengan yang diinginkan. Simulasi dilakukan dengan kondisi panel surya yang memiliki nilai iradiasi dan temperatur berubah-ubah serta turbin angin yang juga terkena angin dengan kecepatan tidak tetap, yaitu antara 4-8 m/s. Hasil simulasi menunjukkan bahwa dual input single output buck converter dapat bekerja dalam keadaan disuplai oleh dua sumber yang berbeda dengan tegangan output converter yang stabil di set point, yaitu 14,4 volt.


Author(s):  
Hendi Purnata ◽  
FNU Supriyono ◽  
Artdhita Fajar Pratiwi ◽  
Muhammad Yusuf

Penelitian ini merancang sistem kecepatan motor brushless DC (BLDC) dengan menggunakan metode kontroler logika fuzzy. Penelitian ini menjelaskan perancangan kontroler logika fuzzy pada motor BLDC dengan mekanisme soft starting. Kontroler logika fuzzy digunakan untuk mengendalikan kecepatan yang berubah-ubah, sedangkan soft starting pada motor BLDC digunakan untuk mengurangi lonjakan arus saat start dengan mengatur duty cycle pada DC-DC buck converter. Hasil pada penelitian ini, respon pada kecepatan motor sesuai dengan refferensi yang diinginkan. Kontroler kecepatan logika fuzzy layak untuk di rancang dan di implementasikan. Respon kecepatan yang berubah-ubah dan beban 5 Nm dapat bekerja sesuai dengan respon yang di inginkan yaitu saat perubahan 700 rpm naik sebesar 2000 rpm kemudian turun sebesar 500 rpm. Saat diberi torsi beban kecepatan sempat berosilasi tetapi dapat kembali ke respon yang di inginkan.


Sign in / Sign up

Export Citation Format

Share Document