Design and optimization of high-performance resilient network-on-chip based multiprocessor system-on-chip

2011 ◽  
Author(s):  
Weichen Liu
2021 ◽  
pp. 1-12
Author(s):  
Arun Prasath Raveendran ◽  
Jafar A. Alzubi ◽  
Ramesh Sekaran ◽  
Manikandan Ramachandran

This Ensuing generation of FPGA circuit tolerates the combination of lot of hard and soft cores as well as devoted accelerators on a chip. The Heterogene Multi-Processor System-on-Chip (Ht-MPSoC) architecture accomplishes the requirement of modern applications. A compound System on Chip (SoC) system designed for single FPGA chip, and that considered for the performance/power consumption ratio. In the existing method, a FPGA based Mixed Integer Programming (MIP) model used to define the Ht-MPSoC configuration by taking into consideration the sharing hardware accelerator between the cores. However, here, the sharing method differs from one processor to another based on FPGA architecture. Hence, high number of hardware resources on a single FPGA chip with low latency and power targeted. For this reason, a fuzzy based MIP and Graph theory based Traffic Estimator (GTE) are proposed system used to define New asymmetric multiprocessor heterogene framework on microprocessor (AHt-MPSoC) architecture. The bandwidths, energy consumption, wait and transmission range are better accomplished in this suggested technique than the standard technique and it is also implemented with a multi-task framework. The new Fuzzy control-based AHt-MPSoC analysis proves significant improvement of 14.7 percent in available bandwidth and 89.8 percent of energy minimized to various traffic scenarios as compared to conventional method.


2014 ◽  
Vol 981 ◽  
pp. 431-434
Author(s):  
Zhan Peng Jiang ◽  
Rui Xu ◽  
Chang Chun Dong ◽  
Lin Hai Cui

Network on Chip(NoC),a new proposed solution to solve global communication problem in complex System on Chip (SoC) design,has absorbed more and more researchers to do research in this area. Due to some distinct characteristics, NoC is different from both traditional off-chip network and traditional on-chip bus,and is facing with the huge design challenge. NoC router design is one of the most important issues in NoC system. The paper present a high-performance, low-latency two-stage pipelined router architecture suitable for NoC designs and providing a solution to irregular 2Dmesh topology for NoC. The key features of the proposed Mix Router are its suitability for 2Dmesh NoC topology and its capability of suorting both full-adaptive routing and deterministic routing algorithm.


2018 ◽  
Vol 67 (12) ◽  
pp. 1818-1834 ◽  
Author(s):  
Weichen Liu ◽  
Lei Yang ◽  
Weiwen Jiang ◽  
Liang Feng ◽  
Nan Guan ◽  
...  

Author(s):  
Yaoyao Ye ◽  
Jiang Xu ◽  
Baihan Huang ◽  
Xiaowen Wu ◽  
Wei Zhang ◽  
...  

2020 ◽  
Vol 2 (3) ◽  
pp. 158-168
Author(s):  
Muhammad Raza Naqvi

Mostly communication now days is done through SoC (system on chip) models so, NoC (network on chip) architecture is most appropriate solution for better performance. However, one of major flaws in this architecture is power consumption. To gain high performance through this type of architecture it is necessary to confirm power consumption while designing this. Use of power should be diminished in every region of network chip architecture. Lasting power consumption can be lessened by reaching alterations in network routers and other devices used to form that network. This research mainly focusses on state-of-the-art methods for designing NoC architecture and techniques to reduce power consumption in those architectures like, network architecture, network links between nodes, network design, and routers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Khurshid Ahmad ◽  
Muhammad Athar Javed Sethi ◽  
Rehmat Ullah ◽  
Imran Ahmed ◽  
Amjad Ullah ◽  
...  

Network on Chip (NoC) is a communication framework for the Multiprocessor System on Chip (MPSoC). It is a router-based communication system. In NoC architecture, nodes of MPSoC are communicating through the network. Different routing algorithms have been developed by researchers, e.g., XY, intermittent XY, DyAD, and DyXY. The main problems in these algorithms are congestion and faults. Congestion and faults cause delay, which degrades the performance of NoC. A congestion-aware algorithm is used for the distribution of traffic over NoC and for the avoidance of congestion. In this paper, a congestion-aware routing algorithm is proposed. The algorithm works by sending congestion information in the data packet. The algorithm is implemented on a 4 × 4 mesh NoC using FPGA. The proposed algorithm decreases latency, increases throughput, and uses less bandwidth in sharing congestion information between routers in comparison to the existing congestion-aware routing algorithms.


Sign in / Sign up

Export Citation Format

Share Document