scholarly journals Differentiation of Neural Stem Cells Into Cells of Oligodendroglial Lineage

2007 ◽  
Vol 50 (1) ◽  
pp. 35-41
Author(s):  
Jaroslav Mokrý ◽  
Jana Karbanová ◽  
Dana Čížková ◽  
Jan Pazour ◽  
Stanislav Filip ◽  
...  

We described three different conditions that induce differentiation of dissociated neural stem cells derived from mouse embryonic CNS. In the first set of experiments, where the cell differentiation was triggered by cell adhesion, removal of growth factors and serum-supplemented medium, only sporadic neuronal and astroglial cells survived longer than two weeks and the latter formed a monolayer. When differentiation was induced in serum-free medium supplemented with retinoic acid, rapid and massive cell death occurred. A prolonged survival was observed in cultivation medium supplemented with serum and growth factors EGF plus FGF-2. One third of the cells did not express cell differentiation markers and were responsible for an increase in cell numbers. The remaining cells differentiated and formed the astrocytic monolayer on which occasional neuronal cells grew. One third of the differentiated phenotypes were represented by cells of oligodendroglial lineage. Differentiation of oligodendroglial cells occurred in a stepwise mechanism because the culture contained all successive developmental stages, including oligodendrocyte progenitors, preoligodendrocytes and immature and mature oligodendrocytes. Maturing oligodendrocytes displayed immunocytochemical and morphological features characteristic of cells that undergo physiological development. The cultivation conditions that supported growth and differentiation of neural stem cells were optimal for in vitro developmental studies and the production of oligodendroglial cells.

2018 ◽  
Author(s):  
Angela K. Tiethof ◽  
Jason R. Richardson ◽  
Ronald P. Hart

AbstractButyrylcholinesterase (BChE) is the evolutionary counterpart to acetylcholinesterase (AChE). Both are expressed early in nervous system development prior to cholinergic synapse formation. The organophosphate pesticide chlorpyrifos (CPF) primarily exerts toxicity through inhibition of AChE, which results in excess cholinergic stimulation at the synapse. We hypothesized that inhibition of AChE and BChE by CPF may impair early neurogenesis in neural stem cells (NSCs). To model neurodevelopment in vitro, we used human NSCs derived from induced pluripotent stem cells (iPSCs) with a focus on initial differentiation mechanisms. Over six days of NSC differentiation, BChE activity and mRNA expression significantly increased, while AChE activity and expression remained unchanged. CPF treatment (10 μM) caused 82% and 92% inhibition of AChE and BChE, respectively. CPF exposure had no effect on cell viability or the expression of differentiation markers HES5, DCX or MAP2. However, shRNA-knockdown of BChE expression resulted in decreased or delayed expression of transcription factors HES5 and HES3. BChE may have a role in the differentiation of NSCs independent of, or in addition to, its enzymatic activity.


Toxics ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 52 ◽  
Author(s):  
Angela Tiethof ◽  
Jason Richardson ◽  
Ronald Hart

Butyrylcholinesterase (BChE) is the evolutionary counterpart to acetylcholinesterase (AChE). Both are expressed early in nervous system development prior to cholinergic synapse formation. The organophosphate pesticide chlorpyrifos (CPF) primarily exerts toxicity through the inhibition of AChE, which results in excess cholinergic stimulation at the synapse. We hypothesized that the inhibition of AChE and BChE by CPF may impair early neurogenesis in neural stem cells (NSCs). To model neurodevelopment in vitro, we used human NSCs derived from induced pluripotent stem cells (iPSCs) with a focus on the initial differentiation mechanisms. Over the six days of NSC differentiation, the BChE activity and mRNA expression significantly increased, while the AChE activity and expression remained unchanged. The CPF treatment (10 μM) caused 82% and 92% inhibition of AChE and BChE, respectively. The CPF exposure had no effect on the cell viability or the expression of the differentiation markers HES5, DCX, or MAP2. However, the shRNA-knockdown of the BChE expression resulted in the decreased or delayed expression of the transcription factors HES5 and HES3. BChE may have a role in the differentiation of NSCs independent of, or in addition to, its enzymatic activity.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Emilia Solomon ◽  
Katie Davis-Anderson ◽  
Blake Hovde ◽  
Sofiya Micheva-Viteva ◽  
Jennifer Foster Harris ◽  
...  

Abstract Background Human induced pluripotent stem cells (iPSC) have opened new avenues for regenerative medicine. Consequently, iPSC-derived motor neurons have emerged as potentially viable therapies for spinal cord injuries and neurodegenerative disorders including Amyotrophic Lateral Sclerosis. However, direct clinical application of iPSC bears in itself the risk of tumorigenesis and other unforeseeable genetic or epigenetic abnormalities. Results Employing RNA-seq technology, we identified and characterized gene regulatory networks triggered by in vitro chemical reprogramming of iPSC into cells with the molecular features of motor neurons (MNs) whose function in vivo is to innervate effector organs. We present meta-transcriptome signatures of 5 cell types: iPSCs, neural stem cells, motor neuron progenitors, early motor neurons, and mature motor neurons. In strict response to the chemical stimuli, along the MN differentiation axis we observed temporal downregulation of tumor growth factor-β signaling pathway and consistent activation of sonic hedgehog, Wnt/β-catenin, and Notch signaling. Together with gene networks defining neuronal differentiation (neurogenin 2, microtubule-associated protein 2, Pax6, and neuropilin-1), we observed steady accumulation of motor neuron-specific regulatory genes, including Islet-1 and homeobox protein HB9. Interestingly, transcriptome profiling of the differentiation process showed that Ca2+ signaling through cAMP and LPC was downregulated during the conversion of the iPSC to neural stem cells and key regulatory gene activity of the pathway remained inhibited until later stages of motor neuron formation. Pathways shaping the neuronal development and function were well-represented in the early motor neuron cells including, neuroactive ligand-receptor interactions, axon guidance, and the cholinergic synapse formation. A notable hallmark of our in vitro motor neuron maturation in monoculture was the activation of genes encoding G-coupled muscarinic acetylcholine receptors and downregulation of the ionotropic nicotinic acetylcholine receptors expression. We observed the formation of functional neuronal networks as spontaneous oscillations in the extracellular action potentials recorded on multi-electrode array chip after 20 days of differentiation. Conclusions Detailed transcriptome profile of each developmental step from iPSC to motor neuron driven by chemical induction provides the guidelines to novel therapeutic approaches in the re-construction efforts of muscle innervation.


2021 ◽  
pp. 232020682110107
Author(s):  
Sandeep S. Katti ◽  
Kishore Bhat ◽  
Chetana Bogar

Aim: The aim of the current study was to isolate stem cells from various dental sources such as dental pulp, periodontal ligament (PDL), and apical papilla, and to characterize stem cells by staining for the presence/absence of specific surface markers and also to differentiate stem cells into osteogenic, chondrogenic, and adipogenic cell lineages by exposing them to specific growth factors under the ideal conditions. Materials and Methods: A total of 117 samples were included in the study, consisting of 30 pulp, 50 gingival, 35 PDL, and 2 apical papilla samples. The pulp was extirpated and transported to the Central Research Laboratory. Gingival connective tissue was collected from the participants undergoing any crown lengthening procedure or any gingivectomy procedure from the Department of Periodontology. A similar procedure was also followed for apical papilla and PDL. Isolation was done followed by the identification of the cells by immunocytochemistry using different markers. Once the identity of cells was confirmed, these cells were treated with different culture media to attain 70% to 100% confluency. Then the medium was replaced with a conditioning medium containing specific growth factors for differentiation into osteogenic, chondrogenic, and adipogenic cell lineages. Result: In our study, the number of samples collected and processed was 117. The isolation rate of stem cells from the above-collected samples was 70%. Statistical analysis—no statistical analysis was done as there was no variability expected. Conclusion: Our study showed that stem cells could be isolated, differentiated, and characterized from different dental sources.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii88-ii88
Author(s):  
Alison Mercer-Smith ◽  
Wulin Jiang ◽  
Alain Valdivia ◽  
Juli Bago ◽  
Scott Floyd ◽  
...  

Abstract INTRODUCTION Non-small cell lung cancer (NSCLC) is the most common cancer to form brain metastases. Radiation treatment is standard-of-care, but recurrence is still observed in 40% of patients. An adjuvant treatment is desperately needed to track down and kill tumor remnants after radiation. Tumoritropic neural stem cells (NSCs) that can home to and deliver a cytotoxic payload offer potential as such an adjuvant treatment. Here we show the transdifferentiation of human fibroblasts into tumor-homing induced neural stem cells (hiNSCs) that secrete the cytotoxic protein TRAIL (hiNSC-TRAIL) and explore the use of hiNSC-TRAIL to treat NSCLC brain metastases. METHODS To determine the migratory capacity of hiNSCs, hiNSCs were infused intracerebroventricularly (ICV) into mice bearing established bilateral NSCLC H460 brain tumors. hiNSC accumulation at tumor foci was monitored using bioluminescent imaging and post-mortem fluorescent analysis. To determine synergistic effects of radiation with TRAIL on NSCLC, we performed in vitro co-culture assays and isobologram analysis. In vivo, efficacy was determined by tracking the progression and survival of mice bearing intracranial H460 treated with hiNSC-TRAIL alone or in combination with 2 Gy radiation. RESULTS/CONCLUSION Following ICV infusion, hiNSCs persisted in the brain for > 1 week and migrated from the ventricles to colocalize with bilateral tumor foci. In vitro, viability assays and isobologram analysis revealed the combination treatment of hiNSC-TRAIL and 2 Gy radiation induced synergistic killing (combination index=0.64). In vivo, hiNSC-TRAIL/radiation combination therapy reduced tumor volumes > 90% compared to control-treated animals while radiation-only and hiNSC-TRAIL-only treated mice showed 21% and 52% reduced volumes, respectively. Dual-treatment extended survival 40%, increasing survival from a median of 20 days in controls to 28 days in the treatment group. These results suggest hiNSC-TRAIL can improve radiation therapy for NSCLC brain metastases and could potentially improve outcomes for patients suffering from this aggressive form of cancer.


Sign in / Sign up

Export Citation Format

Share Document