scholarly journals Electrical Properties of Plastic Composite Materials with Rice-hull and Soy-hull Carbon Powders

2012 ◽  
Vol 37 (1) ◽  
pp. 53-56
Author(s):  
K. Satou ◽  
T. Takahashi ◽  
H. Goto ◽  
T. Kaneiwa ◽  
H. Iizuka
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hüsnügül Yılmaz Atay ◽  
Erdal Çelik

In our previous work, we studied the physical characteristics (particle size, surface treatment, etc.) of huntite/hydromagnesite mineral in order to be employed as a flame retardant filler. With this respect, electrical properties of the mineral reinforced polymeric composites were investigated in this study. After grinding of huntite/hydromagnesite mineral to the particle size of 10 μm, 1 μm, and 0.1 μm, phase and microstructural analyses were undertaken using X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The ground minerals with different particle size and content levels were subsequently added to ethylene vinyl acetate copolymer (EVA) to produce composite materials. After fabrication of huntite/hydromagnesite reinforced plastic composite samples, they were characterized by using Fourier transform infrared (FTIR) and SEM-EDS. Electrical properties were measured as a main objective of this paper with Alpha-N high resolution dielectric analyzer as a function of particle size and loading level. Dielectric constant, dissipation factor, specific resistance, and conductivity of the composite materials were measured as a function of frequency. On the other hand, conductivity of Ag-coated and uncoated polymeric composite materials was measured. It was concluded that the electrical properties of plastic composites were improved with reducing the mineral particle size.


2018 ◽  
Vol 777 ◽  
pp. 499-507 ◽  
Author(s):  
Ossi Martikka ◽  
Timo Kärki ◽  
Qing Ling Wu

3D printing has rapidly become popular in both industry and private use. Especially fused deposition modeling has increased its popularity due to its relatively low cost. The purpose of this study is to increase knowledge in the mechanical properties of parts made of wood-plastic composite materials by using 3D printing. The tensile properties and impact strength of two 3D-printed commercial wood-plastic composite materials are studied and compared to those made of pure polylactic acid. Relative to weight –mechanical properties and the effect of the amount of fill on the properties are also determined. The results indicate that parts made of wood-plastic composites have notably lower tensile strength and impact strength that those made of pure polylactic acid. The mechanical properties can be considered sufficient for low-stress applications, such as visualization of prototypes and models or decorative items.


2021 ◽  
Vol 2021 (23) ◽  
pp. 214-224
Author(s):  
Artur Onyshchenko ◽  
◽  
Mykola Garkusha ◽  
Оlena Deli ◽  
◽  
...  

Introduction. Innovative, new materials are increasingly used in transport construction, among which composite materials are becoming widespread.Small bridges and elements of large bridges, such as roadway slabs, pavements, railings, composite reinforcement, reinforcement elements, are made of composite materials.Recently, the use of polymer composite materials for the manufacture of lightly loaded structural elements of transport structures, such as lighting poles, drainage trays, railings.Much attention should be paid to the fiberglass composite railing, which has a number of advantages over traditional metal fencing. Unfortunately, at present there are no clearly defined in Ukraine regulations on fiberglass composite fencing, so this topic is relevant and necessary for the transport industry.Problem Statement. From the literature analysis it is established that the railings of highways and sidewalks are in difficult operating conditions, are constantly exposed to aggressive environments - water, chemicals, salts.Goal. Increasing the durability of the railing by using new materials.Results. The analysis of production of a fiberglass profile is carried out. On the basis of the conducted researches the general requirements to a protection of fiberglass composite washing machine are established. On the basis of the current normative documents the classification of a protection on a place of installation, type of filling of a skeleton, a method of fastening of risers is developed. The paper presents the main parameters and dimensions of the fence. Material requirements are set. Methods of control of a protection with establishment of a technique of test of a protection on resistance to action of horizontal and vertical loadings are developed. Recommendations on installation and installation of a protection of fiberglass composite washing machine are offered.Conclusions. The research results were used in the development of technical conditions for the protection of fiberglass composite washing machine.Keywords: road, composite, bridge, fencing, profile, fiberglass, artificial construction


2021 ◽  
Vol 19 (3) ◽  
pp. 159-169
Author(s):  
B. B. Kaidar ◽  
G.T. Smagulova ◽  
A.A. Imash ◽  
S. Zhaparkul ◽  
Z.A. Mansurov

Attention to carbon fiber (CF) conditioned by their unique physicochemical, mechanical and electrical properties, which makes them in demand in various fields of activity. Today there are several kinds of carbon fibers, most of which (about 90%) are made of polyacrylonitrile (PAN). Despite the fact that carbon fibers are produced from several types of different precursors, their widespread commercial use is limited by the high cost of the product. Has, many research and engineering group seek to reduce the cost of production by using cheap carbon raw materials. A likely solution to this problem is the exploitation of coal, petroleum and coal tar as an effective progenitor for CF production. This review discusses neoteric accomplishment in CF synthesis using various carbon pitches. The possibility of obtaining carbon fibers based on resin with the addition of PAN is presented, and the prospects for their use in energy storage systems and various reinforced composite materials are described in detail.


Sign in / Sign up

Export Citation Format

Share Document