Application of processing fiber-plastic composite washing

2021 ◽  
Vol 2021 (23) ◽  
pp. 214-224
Author(s):  
Artur Onyshchenko ◽  
◽  
Mykola Garkusha ◽  
Оlena Deli ◽  
◽  
...  

Introduction. Innovative, new materials are increasingly used in transport construction, among which composite materials are becoming widespread.Small bridges and elements of large bridges, such as roadway slabs, pavements, railings, composite reinforcement, reinforcement elements, are made of composite materials.Recently, the use of polymer composite materials for the manufacture of lightly loaded structural elements of transport structures, such as lighting poles, drainage trays, railings.Much attention should be paid to the fiberglass composite railing, which has a number of advantages over traditional metal fencing. Unfortunately, at present there are no clearly defined in Ukraine regulations on fiberglass composite fencing, so this topic is relevant and necessary for the transport industry.Problem Statement. From the literature analysis it is established that the railings of highways and sidewalks are in difficult operating conditions, are constantly exposed to aggressive environments - water, chemicals, salts.Goal. Increasing the durability of the railing by using new materials.Results. The analysis of production of a fiberglass profile is carried out. On the basis of the conducted researches the general requirements to a protection of fiberglass composite washing machine are established. On the basis of the current normative documents the classification of a protection on a place of installation, type of filling of a skeleton, a method of fastening of risers is developed. The paper presents the main parameters and dimensions of the fence. Material requirements are set. Methods of control of a protection with establishment of a technique of test of a protection on resistance to action of horizontal and vertical loadings are developed. Recommendations on installation and installation of a protection of fiberglass composite washing machine are offered.Conclusions. The research results were used in the development of technical conditions for the protection of fiberglass composite washing machine.Keywords: road, composite, bridge, fencing, profile, fiberglass, artificial construction

Author(s):  
Ashot G. Akopyan ◽  

Modern technology shows increased demands on the strength properties of machines, their parts, as well as various structures, reducing their weight, volume and size, which leads to the need to use anisotropic composite materials. Finding criteria to determine the ultimate strength characteristics of structural elements, engineering structures is one of the urgent problems of solid mechanics. Strength problems in structures are often reduced to finding out the nature of the local stress state at the vertices of the joints of the constituent parts. The solution of this urgent problem for composite anisotropic plates can be found in this article, where the author continues the research in this area, extending them to the bending of anisotropic composite plates. The aim of the work is to study the limit stress state of anisotropic composite plates in the framework of the classical theory of plate bending. The outer edges of the plate are considered to be free. Using the classical theory of anisotropic plate bending in the space of physical and geometric parameters, the hypersurface equations determining the low-stress zones for the edge of the contact surface of a composite cylindrical orthotropic plate are obtained. Modern technological processes of welding, surfacing, soldering and bonding allow to produce structural elements of monolithic interconnected dissimilar anisotropic materials. The combination of different materials with qualities corresponding to certain operating conditions opens up great opportunities to improve the technical and economic characteristics of machines, equipment and structures. It can contribute to a significant increase in their reliability, durability, reduce the cost of production and operation. On this basis, the solution proposed in this work can be useful to increase the strength of composite materials.


2011 ◽  
Vol 61 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Daniel Saloni ◽  
Urs Buehlmann ◽  
Richard L. Lemaster

2019 ◽  
Vol 777 (12) ◽  
pp. 73-77
Author(s):  
B.A. BONDAREV ◽  
◽  
T.N. STORODUBTSEVA ◽  
D.A. KOPALIN ◽  
S.V. KOSTIN ◽  
...  

2019 ◽  
pp. 116-122
Author(s):  
V. V. Stepanov ◽  
A. D. Kashtanov ◽  
S. U. Shchutsky ◽  
A. N. Agrinsky ◽  
N. I. Simonov

We consider the results of studies on the choice of material of the lower radial bearing of the pump, designed to circulate the coolant lead – bismuth. The circulation of the liquid coolant is provided by a vertical axial pump having a “long” shaft. In this design it is necessary to provide for the lower bearing the lubrication carried out with lead – bismuth coolant. Having analyzed the operating conditions of the axial pump, we decided to carry out the lower bearing in accordance with the scheme of a hydrodynamic sliding bearing. The materials of friction pairs in such a bearing must withstand the stresses arising from the operation of the pump, as well as the aggressive conditions of the coolant. Non-metallic materials – ceramics and carbon-based composite materials – were selected basing on the study of literature data for experimental research on the corrosion and heat resistance in the lead-bismuth environment. 


Author(s):  
Dieter Weichert ◽  
Abdelkader Hachemi

The special interest in lower bound shakedown analysis is that it provides, at least in principle, safe operating conditions for sensitive structures or structural elements under fluctuating thermo-mechanical loading as to be found in power- and process engineering. In this paper achievements obtained over the last years to introduce more sophisticated material models into the framework of shakedown analysis are developed. Also new algorithms will be presented that allow using the addressed numerical methods as post-processor for commercial finite element codes. Examples from practical engineering will illustrate the potential of the methodology.


2018 ◽  
Vol 777 ◽  
pp. 499-507 ◽  
Author(s):  
Ossi Martikka ◽  
Timo Kärki ◽  
Qing Ling Wu

3D printing has rapidly become popular in both industry and private use. Especially fused deposition modeling has increased its popularity due to its relatively low cost. The purpose of this study is to increase knowledge in the mechanical properties of parts made of wood-plastic composite materials by using 3D printing. The tensile properties and impact strength of two 3D-printed commercial wood-plastic composite materials are studied and compared to those made of pure polylactic acid. Relative to weight –mechanical properties and the effect of the amount of fill on the properties are also determined. The results indicate that parts made of wood-plastic composites have notably lower tensile strength and impact strength that those made of pure polylactic acid. The mechanical properties can be considered sufficient for low-stress applications, such as visualization of prototypes and models or decorative items.


2016 ◽  
Vol 45 (12) ◽  
pp. 3353-3376 ◽  
Author(s):  
Wilhelm Schwieger ◽  
Albert Gonche Machoke ◽  
Tobias Weissenberger ◽  
Amer Inayat ◽  
Thangaraj Selvam ◽  
...  

Starting from a basic classification of “hierarchical porosity” this review gives a broad overview of preparation routes towards hierarchically porous all-zeolite and zeolite containing composite materials.


2021 ◽  
Vol 284 ◽  
pp. 05001
Author(s):  
Alevtina Balakina ◽  
Yury Lempl

This article is devoted to the detailed analysis of modern requirements for finishing materials, used in the interiors of inpatient facility ward units. The authors have studied a number of regulatory normative documents acting in the territory of the Russian Federation and analyzed the practical experience of interior decoration of ward units at the health care capital construction facilities. The authors highlight and describe the main requirements for the finishing materials for the inpatient facility ward units and point out the peculiarities of solutions in the interiors. A classification of modern finishing materials (with an indication of their technical characteristics) used in the decoration of interiors of long-term care units is made on the basis of the practical experience studied by the authors taking into account the functional purpose of the premises as well as the variants of visual design of interiors of inpatient facility ward units.


Sign in / Sign up

Export Citation Format

Share Document