scholarly journals Analysis of Air Pollutant Emissions from Agricultural Machinery in South Korea

Author(s):  
Chang-Seop Shin ◽  
◽  
Tusan Park ◽  
Dong-Hyuk Hong ◽  
TaeHan Kim
Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 440
Author(s):  
Yi Ai ◽  
Yunshan Ge ◽  
Zheng Ran ◽  
Xueyao Li ◽  
Zhibing Xu ◽  
...  

Diesel-powered agricultural machinery (AM) is a significant contributor to air pollutant emissions, including nitrogen oxides (NOx) and particulate matter (PM). However, the fuel consumption and pollutant emissions from AM remain poorly quantified in many countries due to a lack of accurate activity data and emissions factors. In this study, the fuel consumption and air pollutant emission from AM were estimated using a survey and emission factors from the literature. A case study was conducted using data collected in Anhui, one of the agricultural provinces of China. The annual active hours of AM in Anhui ranged 130 to 175 h. The estimated diesel fuel consumption by AM was 1.45 Tg in 2013, approximately 25% of the total diesel consumption in the province. The air pollutants emitted by AM were 57 Gg of carbon monoxide, 14 Gg of hydrocarbon, 74 Gg of NOx and 5.7 Gg of PM in 2013. The NOx and PM emissions from AM were equivalent to 17% and 22% of total on-road traffic emissions in Anhui. Among nine types of AM considered, rural vehicles are the largest contributors to fuel consumption (31%) and air emissions (33–45%).


2018 ◽  
Vol 57 (10) ◽  
pp. 2363-2373 ◽  
Author(s):  
Hye-Ryun Oh ◽  
Chang-Hoi Ho ◽  
Doo-Sun R. Park ◽  
Jinwon Kim ◽  
Chang-Keun Song ◽  
...  

AbstractCold-season air quality in Seoul, South Korea, has been improved noticeably between 2001 and 2015 with a near-50% decrease in the mean concentration of particulate matter with aerodynamic diameters ≤10 μm (PM10). Like the change in mean concentration, the occurrence frequency and intensity of the extreme-high-PM10 episodes exceeding 100 μg m−3 has significantly decreased as well. In addition to the multilateral efforts of the South Korean government to reduce air pollutant emissions, this study proposes that large-scale circulation changes also could have contributed to the air quality improvements. Specifically, the recent weakening of the Aleutian low may have intensified the tropospheric westerlies around the Korean Peninsula, resulting in a shorter residence time of particulate matter over South Korea. Thus, despite constant governmental effort to reduce pollutant emissions, the improvement in air quality over South Korea may be delayed if the Aleutian low recovers its past strength in the future. This study emphasizes the importance of the meteorological field in determining the air quality over South Korea.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1208
Author(s):  
Gyu-Gang Han ◽  
Jun-Hyuk Jeon ◽  
Yong-Jin Cho ◽  
Myoung-Ho Kim ◽  
Seong-Min Kim

In Korea, rice is a major staple grain and it is mainly cultivated using various types of agricultural machinery. Air pollutants emitted from agricultural machinery have their origins mainly from the exhaustion of internal combustion engines. In this study, the emission characteristics of five main air pollutants by the European Environment Agency’s Tier 1 method for rice cultivation were analyzed. Diesel is a main fuel for agricultural machinery and gasoline is generally used only for rice transplanters as a fuel in Korea. Tractors consume 46% of total fuel consumption and 56% of diesel fuel consumption. Gasoline used for rice transplanters accounts for about 17% of the total fuel consumption each year. Tractors and rice transplanters emit 82% of all total pollutants. From 2011 to 2019, the total amount of air pollutant emissions decreased by 15%. That accounted for the reduction of rice cultivation fields in those periods. Rice transplanting operation accounts for 42% of total emissions. Then, harrowing, harvesting, tilling, leveling, and pest control operations generated 10%, 10%, 8%, 8%, and 7% of total emissions, respectively. The contribution of each air pollutant held 54% of CO, 39% of NOx, 5% of NMVOC, and 2% of TSP from the total emission inventory. The three major regions emitting air pollutants from mechanized agricultural practices were Jeollanam-do, Chungcheongnam-do, and Jeollabuk-do, which consume 55% of the total fuel usage in rice farming. The total amount of air pollutant emissions from rice cultivation practices in 2019 was calculated as 8448 tons in Korea.


Author(s):  
Gyu Gang Han ◽  
Jun Hyuk Jeon ◽  
Yong Jin Cho ◽  
Myoung Ho Kim ◽  
Seong Min Kim

In Korea, rice is a major staple grain and is mainly cultivated using various agricultural machinery. Air pollutants emitted from agricultural machinery have their origins mainly from the exhaustion of internal combustion engines. In this study, emission characteristics of five main air pollutants by European Environment Agency's Tier 1 method for rice cultivation was analyzed. Diesel is a main fuel for agricultural machinery and gasoline is generally used only for rice transplanters as a fuel in Korea. Tractors consume 46% of total fuel consumption and 56% of diesel fuel consumption. Gasoline used for rice transplanters accounts for 17% of total fuel consumption each year. Tractors and rice transplanters are emitting 82% of all total pollutants. From 2011 to 2019, the total amount of air pollutant emissions was decrease by 15%. That accounted for the reduction of rice cultivation fields in those periods. Rice transplanting operation was in charge of 42% of total emissions. Then, harrowing, harvesting, tilling, leveling, and pest control operations generated 10%, 10%, 8%, 8% and 7% of total emissions, respectively. The contribution of each air pollutant held 54% of CO, 39% of NOx, 5% of NMVOC, and 2% of TSP from the total emission inventory. The three major regions emitting air pollutants from mechanized agricultural practices were Jeollanam-do, Chungcheongnam-do, and Jeollabuk-do, which consume 55% of total fuel usage in rice farming. The total amount of air pollutant emissions from rice cultivation practices in 2019 was calculated as 8,448 Mg in Korea.


2017 ◽  
Vol 16 (4) ◽  
pp. 809-819 ◽  
Author(s):  
Gabriel Lazar ◽  
Iulia Carmen Ciobotici Terryn ◽  
Andreea Cocarcea

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 552
Author(s):  
Bu-Yo Kim ◽  
Joo Wan Cha ◽  
Ki-Ho Chang ◽  
Chulkyu Lee

In this study, the visibility of South Korea was predicted (VISRF) using a random forest (RF) model based on ground observation data from the Automated Synoptic Observing System (ASOS) and air pollutant data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) model. Visibility was predicted and evaluated using a training set for the period 2017–2018 and a test set for 2019. VISRF results were compared and analyzed using visibility data from the ASOS (VISASOS) and the Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) (VISLDAPS) operated by the Korea Meteorological Administration (KMA). Bias, root mean square error (RMSE), and correlation coefficients (R) for the VISASOS and VISLDAPS datasets were 3.67 km, 6.12 km, and 0.36, respectively, compared to 0.14 km, 2.84 km, and 0.81, respectively, for the VISASOS and VISRF datasets. Based on these comparisons, the applied RF model offers significantly better predictive performance and more accurate visibility data (VISRF) than the currently available VISLDAPS outputs. This modeling approach can be implemented by authorities to accurately estimate visibility and thereby reduce accidents, risks to public health, and economic losses, as well as inform on urban development policies and environmental regulations.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd6696
Author(s):  
Zongbo Shi ◽  
Congbo Song ◽  
Bowen Liu ◽  
Gongda Lu ◽  
Jingsha Xu ◽  
...  

The COVID-19 lockdowns led to major reductions in air pollutant emissions. Here, we quantitatively evaluate changes in ambient NO2, O3, and PM2.5 concentrations arising from these emission changes in 11 cities globally by applying a deweathering machine learning technique. Sudden decreases in deweathered NO2 concentrations and increases in O3 were observed in almost all cities. However, the decline in NO2 concentrations attributable to the lockdowns was not as large as expected, at reductions of 10 to 50%. Accordingly, O3 increased by 2 to 30% (except for London), the total gaseous oxidant (Ox = NO2 + O3) showed limited change, and PM2.5 concentrations decreased in most cities studied but increased in London and Paris. Our results demonstrate the need for a sophisticated analysis to quantify air quality impacts of interventions and indicate that true air quality improvements were notably more limited than some earlier reports or observational data suggested.


2014 ◽  
Vol 14 (17) ◽  
pp. 8849-8868 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.


Sign in / Sign up

Export Citation Format

Share Document