scholarly journals Analysis of Air Pollutant Emissions for Mechanized Rice Cultivation in Korea

Author(s):  
Gyu Gang Han ◽  
Jun Hyuk Jeon ◽  
Yong Jin Cho ◽  
Myoung Ho Kim ◽  
Seong Min Kim

In Korea, rice is a major staple grain and is mainly cultivated using various agricultural machinery. Air pollutants emitted from agricultural machinery have their origins mainly from the exhaustion of internal combustion engines. In this study, emission characteristics of five main air pollutants by European Environment Agency's Tier 1 method for rice cultivation was analyzed. Diesel is a main fuel for agricultural machinery and gasoline is generally used only for rice transplanters as a fuel in Korea. Tractors consume 46% of total fuel consumption and 56% of diesel fuel consumption. Gasoline used for rice transplanters accounts for 17% of total fuel consumption each year. Tractors and rice transplanters are emitting 82% of all total pollutants. From 2011 to 2019, the total amount of air pollutant emissions was decrease by 15%. That accounted for the reduction of rice cultivation fields in those periods. Rice transplanting operation was in charge of 42% of total emissions. Then, harrowing, harvesting, tilling, leveling, and pest control operations generated 10%, 10%, 8%, 8% and 7% of total emissions, respectively. The contribution of each air pollutant held 54% of CO, 39% of NOx, 5% of NMVOC, and 2% of TSP from the total emission inventory. The three major regions emitting air pollutants from mechanized agricultural practices were Jeollanam-do, Chungcheongnam-do, and Jeollabuk-do, which consume 55% of total fuel usage in rice farming. The total amount of air pollutant emissions from rice cultivation practices in 2019 was calculated as 8,448 Mg in Korea.

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1208
Author(s):  
Gyu-Gang Han ◽  
Jun-Hyuk Jeon ◽  
Yong-Jin Cho ◽  
Myoung-Ho Kim ◽  
Seong-Min Kim

In Korea, rice is a major staple grain and it is mainly cultivated using various types of agricultural machinery. Air pollutants emitted from agricultural machinery have their origins mainly from the exhaustion of internal combustion engines. In this study, the emission characteristics of five main air pollutants by the European Environment Agency’s Tier 1 method for rice cultivation were analyzed. Diesel is a main fuel for agricultural machinery and gasoline is generally used only for rice transplanters as a fuel in Korea. Tractors consume 46% of total fuel consumption and 56% of diesel fuel consumption. Gasoline used for rice transplanters accounts for about 17% of the total fuel consumption each year. Tractors and rice transplanters emit 82% of all total pollutants. From 2011 to 2019, the total amount of air pollutant emissions decreased by 15%. That accounted for the reduction of rice cultivation fields in those periods. Rice transplanting operation accounts for 42% of total emissions. Then, harrowing, harvesting, tilling, leveling, and pest control operations generated 10%, 10%, 8%, 8%, and 7% of total emissions, respectively. The contribution of each air pollutant held 54% of CO, 39% of NOx, 5% of NMVOC, and 2% of TSP from the total emission inventory. The three major regions emitting air pollutants from mechanized agricultural practices were Jeollanam-do, Chungcheongnam-do, and Jeollabuk-do, which consume 55% of the total fuel usage in rice farming. The total amount of air pollutant emissions from rice cultivation practices in 2019 was calculated as 8448 tons in Korea.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 440
Author(s):  
Yi Ai ◽  
Yunshan Ge ◽  
Zheng Ran ◽  
Xueyao Li ◽  
Zhibing Xu ◽  
...  

Diesel-powered agricultural machinery (AM) is a significant contributor to air pollutant emissions, including nitrogen oxides (NOx) and particulate matter (PM). However, the fuel consumption and pollutant emissions from AM remain poorly quantified in many countries due to a lack of accurate activity data and emissions factors. In this study, the fuel consumption and air pollutant emission from AM were estimated using a survey and emission factors from the literature. A case study was conducted using data collected in Anhui, one of the agricultural provinces of China. The annual active hours of AM in Anhui ranged 130 to 175 h. The estimated diesel fuel consumption by AM was 1.45 Tg in 2013, approximately 25% of the total diesel consumption in the province. The air pollutants emitted by AM were 57 Gg of carbon monoxide, 14 Gg of hydrocarbon, 74 Gg of NOx and 5.7 Gg of PM in 2013. The NOx and PM emissions from AM were equivalent to 17% and 22% of total on-road traffic emissions in Anhui. Among nine types of AM considered, rural vehicles are the largest contributors to fuel consumption (31%) and air emissions (33–45%).


2020 ◽  

<p>Air pollutant emissions and fuel consumption of vehicles equipped with internal combustion engines are highly susceptible to the conditions of engine operation. The purpose of this research was to investigate the correlation between the emissions of individual pollutants (carbon monoxide, hydrocarbons, nitrogen oxides, and carbon dioxide), the fuel consumption and various dynamic conditions of the operation of an engine. The empirical data was obtained by testing of passenger car with a spark-ignition engine on a chassis dynamometer in 12 various driving tests, both type-approval and special. The results indicate, that the strongest correlation exists between the emissions of carbon dioxide and hydrocarbons and between the fuel consumption and the emissions of hydrocarbons and carbon dioxide. The weakest correlation was found to be between the emissions of carbon monoxide and nitrogen oxides. The average value of vehicle velocity proved to be suitable zero-dimensional characteristic of the dynamic driving conditions. The correlation between the emission of hydrocarbons and the average vehicle velocity can be assessed as the strongest, while between the emission of nitrogen oxides and the average vehicle velocity – the weakest.</p>


2014 ◽  
Vol 14 (17) ◽  
pp. 8849-8868 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.


2021 ◽  
Vol 108 (Supplement_6) ◽  
Author(s):  
J Fort ◽  
H Hughes ◽  
U Khan ◽  
A Glynn

Abstract Aim Several papers have analysed the clinical benefits and safety of Virtual Fracture Clinics (VFCs). A significant increase in the use of Trauma and Orthopaedic (T&O) VFCs was seen during the COVID-19 pandemic. This study aims to investigate the social impact of VFCs on the travel burden and travel costs of T&O patients, as well as the potential environmental benefits in relation to fuel consumption and travel-related pollutant emissions. Method All patients referred for T&O VFC review from March 2020 to June 2020 were retrospectively analysed. The travel burden and environmental impacts of hypothetical face-to-face consultations were compared with these VFC reviews. The primary outcomes measured were patient travel time saved, patient travel distance saved, patient cost savings and reduction in air-pollutant emissions. Results Over a four-month period, 1359 VFC consultations were conducted. The average travel distance saved by VFC review was 88.6 kilometres (range 3.3-615), with an average of 73 minutes (range 9-390) of travel-time saved. Patients consumed, on average, 8.2 litres (range 0.3-57.8) less fuel and saved an average of €11.02 (range 0.41-76.59). The average reduction in air-pollutant vehicle emissions, including carbon dioxide, carbon monoxide, nitric oxides and volatile organic compounds was 20.3 kilograms (range 0.8-140.8), 517.3 grams (g) (range 19.3-3592.3), 38.1g (range 1.4-264.8) and 56.9g (range 2.1-395.2), respectively. Conclusions VFCs reduce patient travel distance, travel time and travel costs. In addition, VFCs confer significant environmental benefits through reduced fuel consumption and reduction of harmful environmental emissions.


2021 ◽  
Vol 5 (2) ◽  
pp. 41-45
Author(s):  
Hurip Jayadi ◽  
Frida Hendrarinata ◽  
Beny Suyanto ◽  
Sunaryo Sunaryo

In general, inpatient health care facilities produce infectious and non-infectious waste 0.3 mᶟ / day. Non-infectious waste that is burned in an incinerator without a chimney filter, can cause particles, CO, SO2, NOx (air pollutants) and cause environmental pollution. This study aims to make a chimney filter design with a Scrubber model on an incinerator at the Public Health Center, Maospati District, Magetan Regency to reduce the amount of air pollutants emitted. This type of research is experimental research. This research designed a particle trapping device, gas by spraying water into the scrubber. The independent variable of this research was the variation of the water flow sprayed in the scrubber (3.2 liters / minute, 4 liters / minute, 5.6 liters / minute). The dependent variables of this study were particles, SO2, NOx, CO. Data collection using a digital gas detector method in the form of a UV spectrophotometer. Data were analyzed descriptively, in the form of frequency distribution, and percentage, presentation of data in a table based on air emission quality standards from thermal waste processing. The results illustrate that the use of a chimney scrubber filter with water spraying 3.2 liters / minute, 4 liters / minute, 5.6 liters / minute can reduce air pollutants, emission of SO2, CO to below the air quality standard. In addition, this tool can also reduce NOx gas and particles, but not yet below the quality standard. The conclusion from the results of this study is particulate emission air pollutants, gas SO2, CO, NOx. the incinerator can be lowered by modifying variations by spraying water 3.2 liters / minute, 4 liters / minute, 5.6 liters / minute on the chimney scrubber filter on the incinerator. Keywords: incinerator; scrubber; water discharge variations; particle; gas


2020 ◽  
Vol 12 (10) ◽  
pp. 4111 ◽  
Author(s):  
Yifeng Xue ◽  
Xizi Cao ◽  
Yi Ai ◽  
Kangli Xu ◽  
Yichen Zhang

Air pollutant emissions from vehicles, railways, and aircraft for freight and passenger transportation are major sources of air pollution, and strongly impact the air quality of Beijing, China. To better understand the variation characteristics of these emissions, we used the emission factor method to quantitatively determine the air pollutant emissions from the transportation sector. The emission intensity of different modes of transportation was estimated, and measures are proposed to prevent and control air pollutants emitted from the transportation sector. The results showed that air pollutant emissions from the transportation sector have been decreasing year by year as a result of the reduction in emissions from motor vehicles, benefiting from the structural adjustment of motor vehicles. A comparison of the emission intensity of primary air pollutants from different modes of transportation showed that the emission level of railway transportation was much lower than that of road transportation. However, Beijing relies heavily on road transportation, with road freight transportation accounting for 96% of freight transportation, whereas the proportion of railway transportation was low. Primary air pollutants from the transportation sector contributed significantly to the total emissions in Beijing. The proportion of NOX emissions increased from 54% in 2013 to 58% in 2018. To reduce air pollutant emissions from the transportation sector, further adjustments and optimization of the structure of transportation in Beijing are needed. As for the control of motor vehicle pollutant emissions, vehicle composition must be adjusted and the development of clean energy must be promoted, as well as the replacement of diesel vehicles with electric vehicles for passenger and freight transportation.


2018 ◽  
Vol 53 ◽  
pp. 04036 ◽  
Author(s):  
Cheng Jieling ◽  
Li Haibo

When vessels are berthed at ports, the air pollutants emitted by auxiliary engines will cause severe pollution to the ports and surrounding environments. In view of this situation, the author first summarizes the Chinese policies and policies of foreign countries on emission of air pollutants from vessels at berth, and then analyses the current status of and measures for control of air pollutant emission from vessels at berth. Secondly, the author analyses the environmental benefits of using shore power for better controlling air pollutant emission from vessels at berth, compares vessels using shore power with vessels using generated power in the energy conservation and emission reduction effects based on the fuel consumption rate of different auxiliary engines and current status of pollutant emission from power generation in China etc., analyses the current status of shore power application in China, estimates the energy conserved and emission reduced when shore power is used by vessels at berth. Thirdly, the author identifies the scale of electric energy replacement by, and environmental benefits of, shore power at ports in China. This paper delivers innovative approaches to the comparison between the effects of energy conservation and emission reduction based on fuel consumption rates of different auxiliary engines and estimation of conserved energy and reduced emission.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wen-jie Zou ◽  
Tai-Yu Lin ◽  
Yung-ho Chiu ◽  
Ting Teng ◽  
Kuei Ying Huang

Finding the balance between economic development and environmental protection is a major problem for many countries around the world. Air pollution caused by economic growth has caused serious damage to humans’ living environment, and as improving energy and resource efficiencies is the first priority, many countries are targeting to move towards a sustainable environment and economic development. This study uses the modified dynamic SBM (slack-based measure) model to explore the economic efficiency and air pollutants emission efficiency in Taiwan’s counties and cities from 2012 to 2015 by taking labor, motor vehicles, and electricity consumption as inputs and average disposable income as output. Particulate matter (PM2.5), nitrogen oxide emissions (NO2), and sulfur oxide emissions (SO2) are undesirable outputs, whereas factory fixed assets are a carry-over variable, and the results show the following: (1) the regions with the best overall efficiency between 2012 and 2015 include Taipei City, Keelung City, Hsinchu City, Chiayi City, and Taitung County; (2) in counties and cities with poor overall efficiency performance, the average disposable income per household has no significant relationship with air pollutant emissions; (3) in counties and cities where overall efficiency is poor, the average efficiency of each household’s disposable income is small; and (4) except for the five counties and cities with the best overall performance, the three air pollutants in the other fourteen counties and cities are high. Overall, the air pollution of most areas needs improvement.


2012 ◽  
Vol 550-553 ◽  
pp. 2378-2381 ◽  
Author(s):  
Tai Yi Yu ◽  
I Cheng Chang ◽  
Mei Yin Hwa ◽  
Li Teh Lu

Vehicle emissions from mobile sources are major contributors to air pollution and varied with vehicle types, vehicle styles, traveled miles, temperature, oil types and the methods of operation and management. This study performs three emission factor models, Mobile-Taiwan 2, Mobile6.2 and EFDB to calculate emission factor of mobile sources from year 1986 to 2011. The emissions of primary air pollutants, MIRs and CO2emitted from mobile sources were calculated. The contribution ratios of varied vehicle types for different air pollutants would be compared and analyzed. Estimated emissions from mobile sources were 32.2, 177, 643, 197 and 401 kilotons/y for PM10, NOx, CO, THC and MIR for 2000; 31.3, 115, 305, 114 and 227 kilotons/y for 2011. Emissions of traditional air pollutants presented a decreasing trend because of fourth-stage emission standards for mobiles sources and CO2 revealed an increasing trend. According to presented control technology for greenhouse gases on mobile sources, ratio of emission for year 2011 to 2000 would be 1.38-1.49.


Sign in / Sign up

Export Citation Format

Share Document