SlimChain

2021 ◽  
Vol 14 (11) ◽  
pp. 2314-2326
Author(s):  
Cheng Xu ◽  
Ce Zhang ◽  
Jianliang Xu ◽  
Jian Pei

Blockchain technology has emerged as the cornerstone of many decentralized applications operating among otherwise untrusted peers. However, it is well known that existing blockchain systems do not scale well. Transactions are often executed and committed sequentially in order to maintain the same view of the total order. Furthermore, it is necessary to duplicate both transaction data and their executions in every node in the blockchain network for integrity assurance. Such storage and computation requirements put significant burdens on the blockchain system, not only limiting system scalability but also undermining system security and robustness by making the network more centralized. To tackle these problems, in this paper, we propose SlimChain, a novel blockchain system that scales transactions through off-chain storage and parallel processing. Advocating a stateless design, SlimChain maintains only the short commitments of ledger states on-chain while dedicating transaction executions and data storage to off-chain nodes. To realize SlimChain, we propose new schemes for off-chain smart contract execution, on-chain transaction validation, and state commitment. We also propose optimizations to reduce network transmissions and a new sharding technique to improve system scalability further. Extensive experiments are conducted to validate the performance of the proposed SlimChain system. Compared with the existing systems, SlimChain reduces the on-chain storage requirements by 97% ~ 99%, while also improving the peak throughput by 1.4× ~ 15.6×.

10.2196/18623 ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. e18623
Author(s):  
Tim Ken Mackey ◽  
Ken Miyachi ◽  
Danny Fung ◽  
Samson Qian ◽  
James Short

Background An estimated US $2.6 billion loss is attributed to health care fraud and abuse. With traditional health care claims verification and reimbursement, the health care provider submits a claim after rendering services to a patient, which is then verified and reimbursed by the payer. However, this process leaves out a critical stakeholder: the patient for whom the services are actually rendered. This lack of patient participation introduces a risk of fraud and abuse. Blockchain technology enables secure data management with transparency, which could mitigate this risk of health care fraud and abuse. Objective The aim of this study is to develop a framework using blockchain to record claims data and transactions in an immutable format and to enable the patient to act as a validating node to help detect and prevent health care fraud and abuse. Methods We developed a health care fraud and abuse blockchain technical framework and prototype using key blockchain tools and application layers including consensus algorithms, smart contracts, tokens, and governance based on digital identity on the Ethereum platform (Ethereum Foundation). Results Our technical framework maps to the claims adjudication process and focuses on Medicare claims, with the US Centers for Medicare and Medicaid Services (CMS) as the central authority. A prototype of the framework system was developed using the blockchain platform Ethereum (Ethereum Foundation), with its design features, workflow, smart contract functions, system architecture, and software implementation outlined. The software stack used to build the system consisted of a front-end user interface framework, a back-end processing server, and a blockchain network. React was used for the user interface framework, and NodeJS and an Express server were used for the back-end processing server; Solidity was the smart contract language used to interact with a local Ethereum blockchain network. Conclusions The proposed framework and the initial prototype have the potential to improve the health care claims process by using blockchain technology for secure data storage and consensus mechanisms, which make the claims adjudication process more patient-centric for the purposes of identifying and preventing health care fraud and abuse. Future work will focus on the use of synthetic or historic CMS claims data to assess the real-world viability of the framework.


2020 ◽  
Author(s):  
Tim Ken Mackey ◽  
Ken Miyachi ◽  
Danny Fung ◽  
Samson Qian ◽  
James Short

BACKGROUND An estimated US $2.6 billion loss is attributed to health care fraud and abuse. With traditional health care claims verification and reimbursement, the health care provider submits a claim after rendering services to a patient, which is then verified and reimbursed by the payer. However, this process leaves out a critical stakeholder: the patient for whom the services are actually rendered. This lack of patient participation introduces a risk of fraud and abuse. Blockchain technology enables secure data management with transparency, which could mitigate this risk of health care fraud and abuse. OBJECTIVE The aim of this study is to develop a framework using blockchain to record claims data and transactions in an immutable format and to enable the patient to act as a validating node to help detect and prevent health care fraud and abuse. METHODS We developed a health care fraud and abuse blockchain technical framework and prototype using key blockchain tools and application layers including consensus algorithms, smart contracts, tokens, and governance based on digital identity on the Ethereum platform (Ethereum Foundation). RESULTS Our technical framework maps to the claims adjudication process and focuses on Medicare claims, with the US Centers for Medicare and Medicaid Services (CMS) as the central authority. A prototype of the framework system was developed using the blockchain platform Ethereum (Ethereum Foundation), with its design features, workflow, smart contract functions, system architecture, and software implementation outlined. The software stack used to build the system consisted of a front-end user interface framework, a back-end processing server, and a blockchain network. React was used for the user interface framework, and NodeJS and an Express server were used for the back-end processing server; Solidity was the smart contract language used to interact with a local Ethereum blockchain network. CONCLUSIONS The proposed framework and the initial prototype have the potential to improve the health care claims process by using blockchain technology for secure data storage and consensus mechanisms, which make the claims adjudication process more patient-centric for the purposes of identifying and preventing health care fraud and abuse. Future work will focus on the use of synthetic or historic CMS claims data to assess the real-world viability of the framework.


Author(s):  
Krithika L. B. ◽  
Abhisek Mazumdar ◽  
Rajesh Kaluri ◽  
Jing Wang

Blockchain technology is very trending and promising. It can revolutionize the traditional way of manipulation of data in many industries. There are industries which blockchain can disrupt: banking, cyber security, smart contract, insurance, cloud storage, government, healthcare, media streaming. The decentralized approach of blockchain using peer-to-peer system to verify the correct record of the ledger, which builds a trust in the system. A system can be compiled and made to get adopted with the concept of smart contract. The aim of the work is to develop a system that is flexible enough to get implemented in the industries like finance, cyber security, data storage, buying and selling of properties, healthcare, etc. This will use a one-way encryption method known as SHA-256. A block with the 256-character code bind with the other metadata of the block will be termed as a smart contract for the item.


2019 ◽  
Vol 5 (1) ◽  
pp. 15-22
Author(s):  
Ardian Thresnantia Atmaja

The key objectives of this paper is to propose a design implementation of blockchain based on smart contract which have potential to change international mobile roaming business model by eliminating third-party data clearing house (DCH). The analysis method used comparative analysis between current situation and target architecture of international mobile roaming business that commonly used by TOGAF Architecture Development Method. The purposed design of implementation has validated the business value by using Total Cost of Ownership (TCO) calculation. This paper applies the TOGAF approach in order to address architecture gap to evaluate by the enhancement capability that required from these three fundamental aspect which are Business, Technology and Information. With the blockchain smart contract solution able to eliminate the intermediaries Data Clearing House system, which impacted to the business model of international mobile roaming with no more intermediaries fee for call data record (CDR) processing and open up for online billing and settlement among parties. In conclusion the business value of blockchain implementation in the international mobile roaming has been measured using TCO comparison between current situation and target architecture that impacted cost reduction of operational platform is 19%. With this information and understanding the blockchain technology has significant benefit in the international mobile roaming business.


Author(s):  
D. V. Gribanov

Introduction. This article is devoted to legal regulation of digital assets turnover, utilization possibilities of distributed computing and distributed data storage systems in activities of public authorities and entities of public control. The author notes that some national and foreign scientists who study a “blockchain” technology (distributed computing and distributed data storage systems) emphasize its usefulness in different activities. Data validation procedure of digital transactions, legal regulation of creation, issuance and turnover of digital assets need further attention.Materials and methods. The research is based on common scientific (analysis, analogy, comparing) and particular methods of cognition of legal phenomena and processes (a method of interpretation of legal rules, a technical legal method, a formal legal method and a formal logical one).Results of the study. The author conducted an analysis which resulted in finding some advantages of the use of the “blockchain” technology in the sphere of public control which are as follows: a particular validation system; data that once were entered in the system of distributed data storage cannot be erased or forged; absolute transparency of succession of actions while exercising governing powers; automatic repeat of recurring actions. The need of fivefold validation of exercising governing powers is substantiated. The author stresses that the fivefold validation shall ensure complex control over exercising of powers by the civil society, the entities of public control and the Russian Federation as a federal state holding sovereignty over its territory. The author has also conducted a brief analysis of judicial decisions concerning digital transactions.Discussion and conclusion. The use of the distributed data storage system makes it easier to exercise control due to the decrease of risks of forge, replacement or termination of data. The author suggests defining digital transaction not only as some actions with digital assets, but also as actions toward modification and addition of information about legal facts with a purpose of its establishment in the systems of distributed data storage. The author suggests using the systems of distributed data storage for independent validation of information about activities of the bodies of state authority. In the author’s opinion, application of the “blockchain” technology may result not only in the increase of efficiency of public control, but also in the creation of a new form of public control – automatic control. It is concluded there is no legislation basis for regulation of legal relations concerning distributed data storage today.


2021 ◽  
Vol 11 (9) ◽  
pp. 4011
Author(s):  
Dan Wang ◽  
Jindong Zhao ◽  
Chunxiao Mu

In the field of modern bidding, electronic bidding leads a new trend of development, convenience and efficiency and other significant advantages effectively promote the reform and innovation of China’s bidding field. Nowadays, most systems require a strong and trusted third party to guarantee the integrity and security of the system. However, with the development of blockchain technology and the rise of privacy protection, researchers has begun to emphasize the core concept of decentralization. This paper introduces a decentralized electronic bidding system based on blockchain and smart contract. The system uses blockchain to replace the traditional database and uses chaincode to process business logic. In data interaction, encryption techniques such as zero-knowledge proof based on graph isomorphism are used to improve privacy protection, which improves the anonymity of participants, the privacy of data transmission, and the traceability and verifiable of data. Compared with other electronic bidding systems, this system is more secure and efficient, and has the nature of anonymous operation, which fully protects the privacy information in the bidding process.


2020 ◽  
Vol 14 (4) ◽  
pp. 488-492
Author(s):  
Jovan Karamachoski ◽  
Ninoslav Marina ◽  
Pavel Taskov

Blockchain technology will bring a disruption in plenty of industries and businesses. Recently it proved the robustness, immutability, auditability, in many crucial practical applications. The blockchain structure offers traceability of actions, alterations, alerts, which is an important property of a system needed for development of sustainable technologies. A crucial part of the blockchain technology regarding the optimization of the processes is the smart contract. It is a self-executable computer code, open and transparent, encoding the terms of a regular contract. It is able to automate the processes, thus decreasing the human-factor mistakes or counterfeits. In this paper, we are presenting the feasibility of the blockchain technology in the certification processes, with an application developed for university diploma certification. The example is easily transferable in other areas and business models such as logistics, supply chain management, or other segments where certification is essential.


Author(s):  
Primasatria Edastama ◽  
Ninda Lutfiani ◽  
Qurotul Aini ◽  
Suryari Purnama ◽  
Isabella Yaumil Annisa

As an innovation in the world of computers, blockchain has many benefits and is also widely applied in the world of education. Blockchain itself has many advantages, especially in the world of education. Blockchain is a digital data storage system that consists of many servers (multiserver). In this Blockchain technology, data created by one server can be replicated and verified by another server. By using this technology with a decentralized system and strong cryptography and can help colleges or universities to build infrastructure in the archive storage of transcripts, diplomas, and diplomas. Usage One of the blockchain technology applications in education is iBC, namely the e-learning Blockchain Certificate, book copyright, and also e-Portfolios. iBC or e-learning Blockchain Certificate is a tool designed to create, verify and also issue blockchain certificates. As has been supported by the IBC to create certificates that are globally verified and stored in a decentralized manner. Here will be presented use cases that are relevant in the use of Blockchain technology in educational environments, especially data processing in universities and we also try to design an IBC based on blockchain technology that can be used to support transparency and accountability of colleges or universities in issuing diplomas and grades. 


Sign in / Sign up

Export Citation Format

Share Document