scholarly journals Oxidative stress increases the risk of pancreatic β cell damage in chronic renal hypertensive rats

2016 ◽  
Vol 4 (16) ◽  
pp. e12900 ◽  
Author(s):  
Shan Gao ◽  
Byung M. Park ◽  
Seung A. Cha ◽  
Ui J. Bae ◽  
Byung H. Park ◽  
...  
Nanoscale ◽  
2016 ◽  
Vol 8 (15) ◽  
pp. 7923-7932 ◽  
Author(s):  
Guang-Ming Lyu ◽  
Yan-Jie Wang ◽  
Xue Huang ◽  
Huai-Yuan Zhang ◽  
Ling-Dong Sun ◽  
...  

Hydrophilic 5 nm and 25 nm CeO2nanocubes, synthesized from the convenient acetate assisted hydrothermal method, could be employed as greatly promising potential antioxidants for controlling H2O2-induced pancreatic β-cell damage.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yanmei Lou ◽  
Muyan Kong ◽  
Leyan Li ◽  
Yu Hu ◽  
Wenjun Zhai ◽  
...  

Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency due to pancreatic β-cell damage and leads to hyperglycemia. The precise molecular mechanisms of the etiology of T1DM are not completely understood. Oxidative stress and the antioxidant status of pancreatic β-cells play a vital role in the pathogenesis and progression of T1DM. The Keap1/Nrf2 signaling pathway plays a critical role in cellular resistance to oxidative stress. This study is aimed at investigating the role of the Keap1/Nrf2 signaling pathway in the progression of T1DM. An alloxan- (ALX-) stimulated T1DM animal model in wild-type (WT) and Nrf2 knockout (Nrf2-/-) C57BL/6J mice and a mouse pancreatic β-cell line (MIN6) were established. Compared with the tolerant (ALX exposure, nondiabetic) WT mice, the sensitive (ALX exposure, diabetic) WT mice exhibited higher blood glucose levels and lower plasma insulin levels. The Keap1/Nrf2 signaling pathway was significantly inhibited in the sensitive WT mice, which was reflected by overexpression of Keap1 and low expression of Nrf2, accompanied by a marked decrease in the expression of the antioxidative enzymes. Compared with WT mice, the Nrf2-/- mice had an increased incidence of T1DM and exhibited more severe pancreatic β-cell damage. The results of in vitro experiments showed that ALX significantly inhibited the viability and proliferation and promoted the apoptosis of MIN6 cells. ALX also markedly increased intracellular ROS production and caused DNA damage in MIN6 cells. In addition, the Keap1/Nrf2 signaling pathway was significantly inhibited in the damaged MIN6 cells. Moreover, Nrf2 silencing by transfection with Nrf2 siRNA markedly exacerbated ALX-induced MIN6 cell injury. Conclusively, this study demonstrates that inhibition of the Keap1/Nrf2 signaling pathway could significantly promote the incidence of T1DM. This study indicates that activation of Keap1/Nrf2 signaling in pancreatic β-cells may be a useful pharmacological strategy for the clinical prevention and treatment of T1DM.


2018 ◽  
Vol 234 (6) ◽  
pp. 8411-8425 ◽  
Author(s):  
Mohammad Javad Saeedi Borujeni ◽  
Ebrahim Esfandiary ◽  
Azar Baradaran ◽  
Ali Valiani ◽  
Mustafa Ghanadian ◽  
...  

Author(s):  
Hyung-Rho Kim ◽  
Hye-Won Rho ◽  
Byung-Hyun Park ◽  
Jin-Woo Park ◽  
Jong-Suk Kim ◽  
...  

2014 ◽  
Vol 306 (10) ◽  
pp. E1163-E1175 ◽  
Author(s):  
Hisashi Yokomizo ◽  
Toyoshi Inoguchi ◽  
Noriyuki Sonoda ◽  
Yuka Sakaki ◽  
Yasutaka Maeda ◽  
...  

Intrauterine environment may influence the health of postnatal offspring. There have been many studies on the effects of maternal high-fat diet (HFD) on diabetes and glucose metabolism in offspring. Here, we investigated the effects in male and female offspring. C57/BL6J mice were bred and fed either control diet (CD) or HFD from conception to weaning, and offspring were fed CD or HFD from 6 to 20 wk. At 20 wk, maternal HFD induced glucose intolerance and insulin resistance in offspring. Additionally, liver triacylglycerol content, adipose tissue mass, and inflammation increased in maternal HFD. In contrast, extending previous observations, insulin secretion at glucose tolerance test, islet area, insulin content, and PDX-1 mRNA levels in isolated islets were lower in maternal HFD in males, whereas they were higher in females. Oxidative stress in islets increased in maternal HFD in males, whereas there were no differences in females. Plasma estradiol levels were lower in males than in females and decreased in offspring fed HFD and also decreased by maternal HFD, suggesting that females may be protected from insulin deficiency by inhibiting oxidative stress. In conclusion, maternal HFD induced insulin resistance and deterioration of pancreatic β-cell function, with marked sex differences in adult offspring accompanied by adipose tissue inflammation and liver steatosis. Additionally, our results demonstrate that potential mechanisms underlying sex differences in pancreatic β-cell function may be related partially to increases in oxidative stress in male islets and decreased plasma estradiol levels in males.


Sign in / Sign up

Export Citation Format

Share Document