scholarly journals Nitric oxide and oxidative stress pathways do not contribute to sex differences in renal injury and function in Dahl SS/Jr rats

2020 ◽  
Vol 8 (13) ◽  
Author(s):  
Hannah R. Turbeville ◽  
Ashley C. Johnson ◽  
Michael R. Garrett ◽  
Elena L. Dent ◽  
Jennifer M. Sasser
2015 ◽  
Vol 34 (4) ◽  
pp. 300-307 ◽  
Author(s):  
Swati Omanwar ◽  
M. Fahim

Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.


2017 ◽  
Vol 313 (2) ◽  
pp. F174-F183 ◽  
Author(s):  
Ying Chen ◽  
Jennifer C. Sullivan ◽  
Aurélie Edwards ◽  
Anita T. Layton

The goals of this study were to 1) develop a computational model of solute transport and oxygenation in the kidney of the female spontaneously hypertensive rat (SHR), and 2) apply that model to investigate sex differences in nitric oxide (NO) levels in SHR and their effects on medullary oxygenation and oxidative stress. To accomplish these goals, we first measured NO synthase (NOS) 1 and NOS3 protein expression levels in total renal microvessels of male and female SHR. We found that the expression of both NOS1 and NOS3 is higher in the renal vasculature of females compared with males. To predict the implications of that finding on medullary oxygenation and oxidative stress levels, we developed a detailed computational model of the female SHR kidney. The model was based on a published male kidney model and represents solute transport and the biochemical reactions among O2, NO, and superoxide ([Formula: see text]) in the renal medulla. Model simulations conducted using both male and female SHR kidney models predicted significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and [Formula: see text] concentration in the outer medulla and upper inner medulla. The models also predicted that increases in endothelial NO-generating capacity, even when limited to specific vascular segments, may substantially raise medullary NO and Po2 levels. Other potential sex differences in SHR, including [Formula: see text] production rate, are predicted to significantly impact oxidative stress levels, but effects on NO concentration and Po2 are limited.


2011 ◽  
Vol 35 (4) ◽  
pp. 418-425 ◽  
Author(s):  
Saowanee Nakmareong ◽  
Upa Kukongviriyapan ◽  
Poungrat Pakdeechote ◽  
Veerapol Kukongviriyapan ◽  
Bunkerd Kongyingyoes ◽  
...  

2011 ◽  
Vol 301 (5) ◽  
pp. H2093-H2101 ◽  
Author(s):  
Baptiste Kurtz ◽  
Helene B. Thibault ◽  
Michael J. Raher ◽  
John R. Popovich ◽  
Sharon Cawley ◽  
...  

Insulin resistance (IR) and systemic hypertension are independently associated with heart failure. We reported previously that nitric oxide synthase 3 (NOS3) has a beneficial effect on left ventricular (LV) remodeling and function after pressure-overload in mice. The aim of our study was to investigate the interaction of IR and NOS3 in pressure-overload-induced LV remodeling and dysfunction. Wild-type (WT) and NOS3-deficient (NOS3−/−) mice were fed either a standard diet (SD) or a high-fat diet (HFD) to induce IR. After 9 days of diet, mice underwent transverse aortic constriction (TAC). LV structure and function were assessed serially using echocardiography. Cardiomyocytes were isolated, and levels of oxidative stress were evaluated using 2′,7′-dichlorodihydrofluorescein diacetate. Cardiac mitochondria were isolated, and mitochondrial respiration and ATP production were measured. TAC induced LV remodeling and dysfunction in all mice. The TAC-induced decrease in LV function was greater in SD-fed NOS3−/− mice than in SD-fed WT mice. In contrast, HFD-fed NOS3−/− developed less LV remodeling and dysfunction and had better survival than did HFD-fed WT mice. Seven days after TAC, oxidative stress levels were lower in cardiomyocytes from HFD-fed NOS3−/− than in those from HFD-fed WT. Nω-nitro-l-arginine methyl ester and mitochondrial inhibitors (rotenone and 2-thenoyltrifluoroacetone) decreased oxidative stress levels in cardiomyocytes from HFD-fed WT mice. Mitochondrial respiration was altered in NOS3−/− mice but did not worsen after HFD and TAC. In contrast with its protective role in SD, NOS3 increases LV adverse remodeling after pressure overload in HFD-fed, insulin resistant mice. Interactions between NOS3 and mitochondria may be responsible for increased oxidative stress levels in HFD-fed WT mice hearts.


2010 ◽  
Vol 67 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Mummedy Swamy ◽  
Wan Roslina Wan Yusof ◽  
K. N. S. Sirajudeen ◽  
Zulkarnain Mustapha ◽  
Chandran Govindasamy

2018 ◽  
Vol 4 (2) ◽  
pp. 267-275
Author(s):  
Miwa Goto ◽  
Daisuke Iohara ◽  
Shinichiro Kaneko ◽  
Taishi Higashi ◽  
Keiichi Motoyama ◽  
...  

The administration of a high-molecular polysaccharide Sacran results in a significant decrease in renal injury and oxidative stress, compared with that for the oral carbonaceous adsorbent, AST-120 (Kremezin®) or a non-treatment group in 5/6 nephrectomized rats. An oral administration of Sacran (20 mg/day) over a 4 week period resulted in a significant decrease in serum indoxyl sulfate, creatinine and urea nitrogen levels, compared with a similar treatment with AST-120 or the non-treatment group. Sacran treatment also resulted in antioxidant potential being maintained, compared with that for AST-120 or the non-treatment group. Immuno-histochemical analyses also demonstrated that CRF rats, when treated with Sacran, showed a decrease in the level of accumulated renal fibrosis and 8-OHdG compared with AST-120 or the non-treatment group. These results suggest that the ingestion of Sacran results in a significant reduction in the levels of prooxidants, such as uremic toxins, in the gastrointestinal tract, thereby inhibiting the subsequent development of oxidative stress in the systemic circulation.


Sign in / Sign up

Export Citation Format

Share Document