Low power pulsed flip-flop with clock gating and conditional pulse enhancement

2021 ◽  
Vol 15 (2) ◽  
pp. 259
Author(s):  
Kuruvilla John ◽  
R.S. Vinod Kumar ◽  
S.S. Kumar
Keyword(s):  
2018 ◽  
Vol 15 (6) ◽  
pp. 792-803
Author(s):  
Sudhakar Jyothula

PurposeThe purpose of this paper is to design a low power clock gating technique using Galeor approach by assimilated with replica path pulse triggered flip flop (RP-PTFF).Design/methodology/approachIn the present scenario, the inclination of battery for portable devices has been increasing tremendously. Therefore, battery life has become an essential element for portable devices. To increase the battery life of portable devices such as communication devices, these have to be made with low power requirements. Hence, power consumption is one of the main issues in CMOS design. To reap a low-power battery with optimum delay constraints, a new methodology is proposed by using the advantages of a low leakage GALEOR approach. By integrating the proposed GALEOR technique with conventional PTFFs, a reduction in power consumption is achieved.FindingsThe design was implemented in mentor graphics EDA tools with 130 nm technology, and the proposed technique is compared with existing conventional PTFFs in terms of power consumption. The average power consumed by the proposed technique (RP-PTFF clock gating with the GALEOR technique) is reduced to 47 per cent compared to conventional PTFF for 100 per cent switching activity.Originality/valueThe study demonstrates that RP-PTFF with clock gating using the GALEOR approach is a design that is superior to the conventional PTFFs.


Author(s):  
Baosheng Wang ◽  
Jayalakshmi Rajaraman ◽  
Kanwaldeep Sobti ◽  
Derrick Losli ◽  
Jeff Rearick

2021 ◽  
Author(s):  
komal swami ◽  
Ritu Sharma

Abstract Energy conservation and delay minimization are the two major goals while designing ultra-low-power digital integrated circuits at lower technology nodes. Here, silicon based carbon nanotube field effect transistor (CNTFET) has been explored as a novel material for future electronics design applications (EDA). In this paper, two energy-efficient switching activity minimization techniques have been applied with proposed designs. First technique detects the completion of sensing stage operation known as transition completion detection (TCD) technique. TC signal generated from NAND operation of complementary outputs of sensing stage which minimizes glitches in the complementary outputs of the latch stage. Another clock gating mechanism applied at the latch stage to smoothen the output waveforms Q and . The proposed and existing designs simulated using 32nm CMOS and 32nm CNTFET technology, indicating that the CNTFET based design reduces power by 45% and 36% respectively in comparison with conventional CMOS. Proposed Low Power Sense Amplifier Flip Flop with transition control detection (TCD-LPSAFF) and Ultra Low Energy Sense Amplifier Flip Flop (ULESAFF) give optimum power delay product (PDP) which is 35.7x10-18 J and 29.6x10-18 J respectively. Also, the effect of process variation has been analyzed at specified corners (FF, TT and SS) in the temperature range of -40º C to 120º C. The performance of all designs has been validated by functionality testing with variation in diameter, number of tubes and pitch respectively.


2021 ◽  
Vol 15 (2) ◽  
pp. 259
Author(s):  
S.S. Kumar ◽  
Kuruvilla John ◽  
R.S. Vinod Kumar
Keyword(s):  

2021 ◽  
Vol 11 (12) ◽  
pp. 3215-3222
Author(s):  
S. Prema ◽  
N. Karthikeyan ◽  
S. Karthik

To adapt to varied working situations, the latest biomedical imaging applications require low energy consumption, high performance, and extensive energy-performance scalability. State-of-the-art electronics with higher sensitivity, higher counting rate, and finer time resolution are required to create higher precision, higher temporal resolution, and maximum contrast biomedical images. In recent days, the system’s power consumption is important critically in modern VLSI circuits particularly for the low power application. In order to decrease the power, a power optimization technique must be used at various design levels. The low power use of logic cells is a proficient technique for decreasing the circuit level power. Dual Feedback edge triggered Flip Flop (DFETFF) is considered for biomedical imaging applications in the proposed system. Initially, the high dynamic range voltage is given as input signal. The comparator output is then retried at the comparator end. The integration capacitor is employed for storing remaining voltage signal. The comparator voltage is then given to the capacitor reset block. In the proposed work, a capacitor-reset block that employs clock signal takes up a dual-feedbackedge-triggered Flip-flop as an alternative of a conventional type for reducing the final output signals errors. Dual feedback loops assure that feedback loops do not tri-state at the time of SET restoration, a scheme that could lead to SEUs in latches if a single delay component and a single feedback loop are used. In digital system, Clock gating is a competent method of lessening the overall consumption of power along with deactivating the clock signal selectively and is useful for controlling the usage of clock signal asynchronously in reference to input-signal current. The integration-control (Vint) signal is employed in controlling the integration time. On the termination of integration, the signal level phase is kept, also similar one is send to arrangement all through read period. As a result, the simulation was carried out after the design layout and the estimations of performance were made and are compared with traditional approaches to prove the proposed mechanism effectiveness for future biomedical applications.


VLSI Design ◽  
2001 ◽  
Vol 12 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Jun Mo Jung ◽  
Jong-Wha Chong

In this paper, a new low power design method of the FIR filter for image processing is proposed. Because the correlation between adjacent pixels is very high in image data, the clock gating technique can be a good candidate for low power strategy. However, the conventional clock gating strategy that is applied independently to every flip-flop of the filter give rise to too much additional area overhead and couldn't get a good result in the power reduction. In our method, each tap register, which is used to delay the input data in the filter, is partitioned into two sub-registers according to the correlation characteristic of its input space. For the sub-register which highly correlated data is inputted into, the dynamic power consumption is reduced by diminishing switching activity of the clock signal. We can also reduce the additional hardware overhead by propagating the clock gating control signal of the first tap register to other tap registers. To identify the efficiency of the proposed design method, we perform the experiments on some filters that are designed in VHDL. The power estimation tool says that the proposed method can reduce the power dissipation of the filter by more than 18% compared to the conventional filter design methods.


Sign in / Sign up

Export Citation Format

Share Document