Analysis of entropy generation and exergy losses of iso-octane and n-butanol adiabatic constant-volume combustion process

2017 ◽  
Vol 24 (1) ◽  
pp. 82 ◽  
Author(s):  
Hongqing Feng ◽  
Jing Zhang ◽  
Daojian Liu ◽  
Zunqing Zheng ◽  
Xiaodong Zhang
2012 ◽  
Vol 468-471 ◽  
pp. 2993-2997
Author(s):  
Xiao Juan Liang ◽  
Xi Qin Li

Polycyclic aromatic hydrocarbons are harmful to human body and environment. In order to know the formatting rules of benzene and polycyclic aromatic hydrocarbons in gasoline combustion process, a series of tests are done in a constant volume combustion bomb. The emissions of benzene and polycyclic aromatic hydrocarbons are measured by a gas chromatography-mass spectrometry analyzer. The test results show that the benzene in combustion products comes from the incomplete combustion fuel. The free radicals out of cracking fuel may also become benzene in combustion process. Adding ethanol in fuels does not necessarily increase the emission of benzene. Formation of polycyclic aromatic hydrocarbons varies with temperature.


Author(s):  
Wladimir Sarmiento-Darkin ◽  
Noam Lior

While exergy analysis is by now commonly used on the system level to identify losses and recommend ways for reducing them, its use on the “intrinsic”, field, level where the exergy of a process is calculated as a function of location and time, is still developing. Intrinsic exergy analysis is a most useful method for identifying and understanding the specific reasons for exergy losses in a process, and in devising methods for their reduction. A good example, which is the sample case of this paper, is the analysis of exergy losses in combustion processes, which are known to be responsible for around 30 % of the fuel potential to produce power. In this paper we develop a methodology for intrinsic exergy analysis and for its use for process improvement, using the case of combustion of a n-heptane droplet as example. The time-dependent continuity, energy and species conservation equations together with the reaction kinetics, state equations, and temperature and concentration dependent transport properties, are solved numerically to determine the temperature and concentrations fields. These results are then used to calculate the rates of local entropy generation to determine the spatial and temporal irreversibilities produced during the combustion process, as well as the exergy efficiency. The results obtained indicate, among other things, that after ignition has taken place, the exergy loss (or entropy generation) component most responsible for the overall exergy loss is the chemical entropy, having the same order of magnitude as the rest of the entropy generation terms combined for all the cases evaluated. The computed exergy efficiency for the base case is 68.4%, in agreement with previous droplet combustion exergy studies. To develop guidelines for the process improvement, the sensitivity of the second law efficiency to the initial gas temperature (Tgi), reaction rate (ω), and combustion duration were analyzed. The results generated several promising improvement avenues.


2012 ◽  
Vol 232 ◽  
pp. 784-787
Author(s):  
Xing Hua Liu ◽  
Hong Liang ◽  
Zhi Qiang Fan ◽  
Dao Jing Wang

Hydrogen-air flame stability with different initial pressures is studied in a constant volume combustion cell. The schlieren flame images and the pressure curves are obtained under various initial pressures, equivalence ratios and initial temperatures. The results show that the time of the laminar flame stage is decreasing with the increasing initial pressure. The main reason of the rapid increasing pressure is whether the squish flame appears. The squish flame stage does not occur when the value of the initial pressure is very low. At this time, the varibility of the pressure is very low. The pressure oscillation occurs when the squish flame or the main flame transmits to the under wall surface. Meanwhile, under the different initial conditions, the time of the mixture combustion process stages is often different, and the flame stability is different. At the same time, the flame crtical radius is decreasing when the initial pressure is increasing.


1952 ◽  
Vol 19 (1) ◽  
pp. 72-76
Author(s):  
A. S. Campbell

Abstract By combining the results of an elementary thermodynamic analysis of the temperature distribution in the burned gases of a constant-volume bomb with an examination of the velocity relations at the flame front, it is possible to relate the “normal burning velocity” to the time rate of production of burned gases. Integration of this equation leads to an estimate of the time required for the combustion process.


Fuel ◽  
2019 ◽  
Vol 248 ◽  
pp. 127-135 ◽  
Author(s):  
Fengjiao Pan ◽  
Jiabo Zhang ◽  
Dong Han ◽  
Tian Lu

2018 ◽  
Vol 145 ◽  
pp. 187-192 ◽  
Author(s):  
Shubhra Kanti Das ◽  
Hyun Jo ◽  
Kyung Hoon Jwa ◽  
Ocktaeck Lim ◽  
Youngmin Woo

Sign in / Sign up

Export Citation Format

Share Document