Cardiac arrhythmia classification using sequential feature selection and decision tree classifier method

Author(s):  
S. Durga ◽  
Esther Daniel ◽  
S. Deepa Kanmani ◽  
Jinsa Mary Philip
2020 ◽  
Vol 10 (22) ◽  
pp. 8137
Author(s):  
Sushruta Mishra ◽  
Pradeep Kumar Mallick ◽  
Hrudaya Kumar Tripathy ◽  
Akash Kumar Bhoi ◽  
Alfonso González-Briones

There is a consistent rise in chronic diseases worldwide. These diseases decrease immunity and the quality of daily life. The treatment of these disorders is a challenging task for medical professionals. Dimensionality reduction techniques make it possible to handle big data samples, providing decision support in relation to chronic diseases. These datasets contain a series of symptoms that are used in disease prediction. The presence of redundant and irrelevant symptoms in the datasets should be identified and removed using feature selection techniques to improve classification accuracy. Therefore, the main contribution of this paper is a comparative analysis of the impact of wrapper and filter selection methods on classification performance. The filter methods that have been considered include the Correlation Feature Selection (CFS) method, the Information Gain (IG) method and the Chi-Square (CS) method. The wrapper methods that have been considered include the Best First Search (BFS) method, the Linear Forward Selection (LFS) method and the Greedy Step Wise Search (GSS) method. A Decision Tree algorithm has been used as a classifier for this analysis and is implemented through the WEKA tool. An attribute significance analysis has been performed on the diabetes, breast cancer and heart disease datasets used in the study. It was observed that the CFS method outperformed other filter methods concerning the accuracy rate and execution time. The accuracy rate using the CFS method on the datasets for heart disease, diabetes, breast cancer was 93.8%, 89.5% and 96.8% respectively. Moreover, latency delays of 1.08 s, 1.02 s and 1.01 s were noted using the same method for the respective datasets. Among wrapper methods, BFS’ performance was impressive in comparison to other methods. Maximum accuracy of 94.7%, 95.8% and 96.8% were achieved on the datasets for heart disease, diabetes and breast cancer respectively. Latency delays of 1.42 s, 1.44 s and 132 s were recorded using the same method for the respective datasets. On the basis of the obtained result, a new hybrid Attribute Evaluator method has been proposed which effectively integrates enhanced K-Means clustering with the CFS filter method and the BFS wrapper method. Furthermore, the hybrid method was evaluated with an improved decision tree classifier. The improved decision tree classifier combined clustering with classification. It was validated on 14 different chronic disease datasets and its performance was recorded. A very optimal and consistent classification performance was observed. The mean values for accuracy, specificity, sensitivity and f-score metrics were 96.7%, 96.5%, 95.6% and 96.2% respectively.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3665
Author(s):  
Ankit Kumar Srivastava ◽  
Devender Singh ◽  
Ajay Shekhar Pandey ◽  
Tarun Maini

A novel feature selection method based on a decision tree (J48) for price forecasting is proposed in this work. The method uses a genetic algorithm along with a decision tree classifier to obtain the minimum number of features giving an optimum forecast accuracy. The usefulness of the proposed approach is established through the performance test of the forecaster using the feature selected by this approach. It is found that the forecast with the selected feature consistently out-performed than that having larger feature set.


Sign in / Sign up

Export Citation Format

Share Document