A study on flow based classification models using machine learning techniques

Author(s):  
K. Chokkanathan ◽  
S. Koteeswaran
RSC Advances ◽  
2014 ◽  
Vol 4 (106) ◽  
pp. 61624-61630 ◽  
Author(s):  
N. S. Hari Narayana Moorthy ◽  
Silvia A. Martins ◽  
Sergio F. Sousa ◽  
Maria J. Ramos ◽  
Pedro A. Fernandes

Classification models to predict the solvation free energies of organic molecules were developed using decision tree, random forest and support vector machine approaches and with MACCS fingerprints, MOE and PaDEL descriptors.


2020 ◽  
Author(s):  
Victor Bacu ◽  
Teodor Stefanut ◽  
Dorian Gorgan

<p>Agricultural management relies on good, comprehensive and reliable information on the environment and, in particular, the characteristics of the soil. The soil composition, humidity and temperature can fluctuate over time, leading to migration of plant crops, changes in the schedule of agricultural work, and the treatment of soil by chemicals. Various techniques are used to monitor soil conditions and agricultural activities but most of them are based on field measurements. Satellite data opens up a wide range of solutions based on higher resolution images (i.e. spatial, spectral and temporal resolution). Due to this high resolution, satellite data requires powerful computing resources and complex algorithms. The need for up-to-date and high-resolution soil maps and direct access to this information in a versatile and convenient manner is essential for pedology and agriculture experts, farmers and soil monitoring organizations.</p><p>Unfortunately, the satellite image processing and interpretation are very particular to each area, time and season, and must be calibrated by the real field measurements that are collected periodically. In order to obtain a fairly good accuracy of soil classification at a very high resolution, without using interpolation methods of an insufficient number of measurements, the prediction based on artificial intelligence techniques could be used. The use of machine learning techniques is still largely unexplored, and one of the major challenges is the scalability of the soil classification models toward three main directions: (a) adding new spatial features (i.e. satellite wavelength bands, geospatial parameters, spatial features); (b) scaling from local to global geographical areas; (c) temporal complementarity (i.e. build up the soil description by samples of satellite data acquired along the time, on spring, on summer, in another year, etc.).</p><p>The presentation analysis some experiments and highlights the main issues on developing a soil classification model based on Sentinel-2 satellite data, machine learning techniques and high-performance computing infrastructures. The experiments concern mainly on the features and temporal scalability of the soil classification models. The research is carried out using the HORUS platform [1] and the HorusApp application [2], [3], which allows experts to scale the computation over cloud infrastructure.</p><p> </p><p>References:</p><p>[1] Gorgan D., Rusu T., Bacu V., Stefanut T., Nandra N., “Soil Classification Techniques in Transylvania Area Based on Satellite Data”. World Soils 2019 Conference, 2 - 3 July 2019, ESA-ESRIN, Frascati, Italy (2019).</p><p>[2] Bacu V., Stefanut T., Gorgan D., “Building soil classification maps using HorusApp and Sentinel-2 Products”, Proceedings of the Intelligent Computer Communication and Processing Conference – ICCP, in IEEE press (2019).</p><p>[3] Bacu V., Stefanut T., Nandra N., Rusu T., Gorgan D., “Soil classification based on Sentinel-2 Products using HorusApp application”, Geophysical Research Abstracts, Vol. 21, EGU2019-15746, 2019, EGU General Assembly (2019).</p>


2022 ◽  
pp. 209-232
Author(s):  
Xiang Li ◽  
Jingxi Liao ◽  
Tianchuan Gao

Machine learning is a broad field that contains multiple fields of discipline including mathematics, computer science, and data science. Some of the concepts, like deep neural networks, can be complicated and difficult to explain in several words. This chapter focuses on essential methods like classification from supervised learning, clustering, and dimensionality reduction that can be easily interpreted and explained in an acceptable way for beginners. In this chapter, data for Airbnb (Air Bed and Breakfast) listings in London are used as the source data to study the effect of each machine learning technique. By using the K-means clustering, principal component analysis (PCA), random forest, and other methods to help build classification models from the features, it is able to predict the classification results and provide some performance measurements to test the model.


10.29007/qshd ◽  
2020 ◽  
Author(s):  
N Sutta ◽  
Z Liu ◽  
X Zhang

Despite the fact that different techniques have been developed to filter spam, due to the spammer’s rapid adoption of new spam detection techniques, we are still overwhelmed with spam emails. Currently, machine learning techniques are the most effective ways to classify and filter spam emails. In this paper, a comprehensive comparison and analysis of the performance of various classification models on the 2007 TREC Public Spam Corpus are exhibited in various cases of without or with N- Grams as well as using separate or combined datasets. It is shown that the inclusion of the N-Grams in the pre-processing phase provides high accuracy results for classification models in most of the cases, and the models using the split approach with combined datasets give better results than models using the separate dataset.


2021 ◽  
Vol 14 (1) ◽  
pp. 453-463
Author(s):  
Abdul Syukur ◽  
◽  
Deden Istiawan ◽  

LQ45 is an Indonesia Stock Exchange Index (ISX) incorporate of 45 companies that meet certain criteria to target investors for selecting certain stocks. The prediction of stock price direction in the financial world is a major issue. The implementation of machine learning and other algorithms for market price analysis and forecasting is a very promising field. Different types of classification algorithms were used to predict the stock market. However, when individual studies are considered separately there is no clear consensus that algorithms work best. In this research, a comparison framework is proposed, which aims to benchmark the performance of a wide range of classification models and use them to predict the LQ45 index. The data in this research contains the transaction level and capitalization size are obtained from the Indonesian Stock Exchange (ISX). For analysis purposes, we set out 10 classifiers that can be used to build classification models and test their performance in the LQ45 dataset. The performance criterion chosen to measure this effect is accuracy, recall, and precision. The results showed that the random forest algorithm had the best performance for predicting the LQ45 index. Whilst the classification and regression trees, C4.5, support vector machine, and logistic regression algorithms also perform well. Besides, the models based on traditional statisticalbased learners that are Naïve Bayes and linear discriminant analysis seem to underperform for predicting the LQ45 index. These results are not only beneficial to enrichment the machine learning techniques literature but also have a significant influence on the stock market prediction in terms of the ability to predict the LQ45 index.


2018 ◽  
Vol 1 (26) ◽  
pp. 461-474
Author(s):  
Hussein Altabrawee

Banks process their financial data by machine learning techniques to get knowledge from the data and use that knowledge in decision making and risk management. In this research, fourteen classification models have been built and trained using a real financial data from a bank in Taiwan. The models forecast the credit card default of a customer which is the repayment delay of the credit granted to the customer. The main idea of the research is evaluating and comparing the models based on their predictive average class accuracy


Molecules ◽  
2010 ◽  
Vol 15 (7) ◽  
pp. 4875-4889 ◽  
Author(s):  
Vanessa Aguiar-Pulido ◽  
José A. Seoane ◽  
Juan R. Rabuñal ◽  
Julián Dorado ◽  
Alejandro Pazos ◽  
...  

2019 ◽  
Vol 12 ◽  
pp. 100089 ◽  
Author(s):  
Leela Sarath Kumar Konda ◽  
S. Keerthi Praba ◽  
Rajendra Kristam

Sign in / Sign up

Export Citation Format

Share Document