scholarly journals A Study of Machine Learning Algorithms on Email Spam Classification

10.29007/qshd ◽  
2020 ◽  
Author(s):  
N Sutta ◽  
Z Liu ◽  
X Zhang

Despite the fact that different techniques have been developed to filter spam, due to the spammer’s rapid adoption of new spam detection techniques, we are still overwhelmed with spam emails. Currently, machine learning techniques are the most effective ways to classify and filter spam emails. In this paper, a comprehensive comparison and analysis of the performance of various classification models on the 2007 TREC Public Spam Corpus are exhibited in various cases of without or with N- Grams as well as using separate or combined datasets. It is shown that the inclusion of the N-Grams in the pre-processing phase provides high accuracy results for classification models in most of the cases, and the models using the split approach with combined datasets give better results than models using the separate dataset.

2021 ◽  
Author(s):  
Simarjeet Kaur ◽  
Meenakshi Bansal ◽  
Ashok Kumar Bathla

Due to the rise in the use of messaging and mailing services, spam detection tasks are of much greater importance than before. In such a set of communications, efficient classification is a comparatively onerous job. For an addressee or any email that the user does not want to have in his inbox, spam can be defined as redundant or trash email. After pre-processing and feature extraction, various machine learning algorithms were applied to a Spam base dataset from the UCI Machine Learning repository in order to classify incoming emails into two categories: spam and non-spam. The outcomes of various algorithms have been compared. This paper used random forest, naive bayes, support vector machine (SVM), logistic regression, and the k nearest (KNN) machine learning algorithm to successfully classify email spam messages. The main goal of this study is to improve the prediction accuracy of spam email filters.


Author(s):  
Rashida Ali ◽  
Ibrahim Rampurawala ◽  
Mayuri Wandhe ◽  
Ruchika Shrikhande ◽  
Arpita Bhatkar

Internet provides a medium to connect with individuals of similar or different interests creating a hub. Since a huge hub participates on these platforms, the user can receive a high volume of messages from different individuals creating a chaos and unwanted messages. These messages sometimes contain a true information and sometimes false, which leads to a state of confusion in the minds of the users and leads to first step towards spam messaging. Spam messages means an irrelevant and unsolicited message sent by a known/unknown user which may lead to a sense of insecurity among users. In this paper, the different machine learning algorithms were trained and tested with natural language processing (NLP) to classify whether the messages are spam or ham.


2021 ◽  
Vol 309 ◽  
pp. 01024
Author(s):  
M. Sri Vidya ◽  
G. R. Sakthidharan

Internet of Things connects various physical objects and form a network to do the services for sensing the physical things without any human intervention. They compute the data, retrieve the data by the network connections made through IoT device components such as Sensors, Protocols, Address, etc., The Global Positioning System (GPS) is used for localization in outer areas such as roads, and ground but cannot be used for Indoor environment. So, while using Indoor Environment, finding or locating an object is not possible by GPS. Therefore by using IoT devices such as Wi-Fi routers in Indoor Environment can localize the objects. It can be done by using Received Signal Strengths (RSSs) from a Wi-Fi router. But by using RSSs in Wi-Fi, there are disturbances, reflections, interferences are caused. By using Outlier detection techniques for localization can identify the objects clearly without any interruptions, noises, and irregular signal strengths. This paper produces research about Indoor Situating Environment and various techniques already used for localization and form the effective solution. The several methods used are compared and form a result to make the further computation in the Indoor Environment. The Comparison is done in order to find the effective and more accurate Machine Learning algorithms used for Indoor Localization.


2018 ◽  
Vol 1 (26) ◽  
pp. 461-474
Author(s):  
Hussein Altabrawee

Banks process their financial data by machine learning techniques to get knowledge from the data and use that knowledge in decision making and risk management. In this research, fourteen classification models have been built and trained using a real financial data from a bank in Taiwan. The models forecast the credit card default of a customer which is the repayment delay of the credit granted to the customer. The main idea of the research is evaluating and comparing the models based on their predictive average class accuracy


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1089
Author(s):  
Sung-Hee Kim ◽  
Chanyoung Jeong

This study aims to demonstrate the feasibility of applying eight machine learning algorithms to predict the classification of the surface characteristics of titanium oxide (TiO2) nanostructures with different anodization processes. We produced a total of 100 samples, and we assessed changes in TiO2 nanostructures’ thicknesses by performing anodization. We successfully grew TiO2 films with different thicknesses by one-step anodization in ethylene glycol containing NH4F and H2O at applied voltage differences ranging from 10 V to 100 V at various anodization durations. We found that the thicknesses of TiO2 nanostructures are dependent on anodization voltages under time differences. Therefore, we tested the feasibility of applying machine learning algorithms to predict the deformation of TiO2. As the characteristics of TiO2 changed based on the different experimental conditions, we classified its surface pore structure into two categories and four groups. For the classification based on granularity, we assessed layer creation, roughness, pore creation, and pore height. We applied eight machine learning techniques to predict classification for binary and multiclass classification. For binary classification, random forest and gradient boosting algorithm had relatively high performance. However, all eight algorithms had scores higher than 0.93, which signifies high prediction on estimating the presence of pore. In contrast, decision tree and three ensemble methods had a relatively higher performance for multiclass classification, with an accuracy rate greater than 0.79. The weakest algorithm used was k-nearest neighbors for both binary and multiclass classifications. We believe that these results show that we can apply machine learning techniques to predict surface quality improvement, leading to smart manufacturing technology to better control color appearance, super-hydrophobicity, super-hydrophilicity or batter efficiency.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


Author(s):  
M. M. Ata ◽  
K. M. Elgamily ◽  
M. A. Mohamed

The presented paper proposes an algorithm for palmprint recognition using seven different machine learning algorithms. First of all, we have proposed a region of interest (ROI) extraction methodology which is a two key points technique. Secondly, we have performed some image enhancement techniques such as edge detection and morphological operations in order to make the ROI image more suitable for the Hough transform. In addition, we have applied the Hough transform in order to extract all the possible principle lines on the ROI images. We have extracted the most salient morphological features of those lines; slope and length. Furthermore, we have applied the invariant moments algorithm in order to produce 7 appropriate hues of interest. Finally, after performing a complete hybrid feature vectors, we have applied different machine learning algorithms in order to recognize palmprints effectively. Recognition accuracy have been tested by calculating precision, sensitivity, specificity, accuracy, dice, Jaccard coefficients, correlation coefficients, and training time. Seven different supervised machine learning algorithms have been implemented and utilized. The effect of forming the proposed hybrid feature vectors between Hough transform and Invariant moment have been utilized and tested. Experimental results show that the feed forward neural network with back propagation has achieved about 99.99% recognition accuracy among all tested machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document