Estimation of the fracture toughness of Tyranno Si-Ti-C-O fibres from flaw size and "fracture mirror" data measured in situ a 3-D woven SiC/SiC composite

2001 ◽  
Vol 16 (1/2/3) ◽  
pp. 189 ◽  
Author(s):  
Ian J. Davies ◽  
Takashi Ishikawa
Keyword(s):  
2012 ◽  
Vol 581-582 ◽  
pp. 819-822 ◽  
Author(s):  
Bin Meng ◽  
Jin Hui Peng

The corundum-mullite was toughened by in-situ synthesized mullite whiskers and the process parameters influencing the fracture toughness of corundum-mullite, such as sintering temperature, addition amount of AlF3 and V2O5, were optimized by means of response surface method. Corundum-mullite with fracture toughness of 9.44 MPa.m-1/2 could be obtained under the optimized conditions, i.e. sintering temperature of 1400°C, 4.8 wt.% of AlF3 and 5.8 wt.% of V2O5. The results showed that it was feasible to prepare corundum-mullite toughened by in-situ synthesized mullite whiskers by the optimized parameters. In addition, an accurate model based on response surface method was proposed to predict the experimental results.


2014 ◽  
Vol 602-603 ◽  
pp. 438-442
Author(s):  
Lei Yu ◽  
Jian Yang ◽  
Tai Qiu

Fully dense (ZrB2+ZrC)/Zr3[Al (Si)]4C6 composites with ZrB2 content varying from 0 to 15 vol.% and fixed ZrC content of 10 vol.% were successfully prepared by in situ hot-pressing in Ar atmosphere using ZrH2, Al, Si, C and B4C as raw materials. With the increase of ZrB2 content, both the bending strength and fracture toughness of the composites increase and then decrease. The synergistic action of ZrB2 and ZrC as reinforcements shows significant strengthening and toughing effect to the Zr3[Al (Si)]4C6 matrix. The composite with 10 vol.% ZrB2 shows the optimal mechanical properties: 516 MPa for bending strength and 6.52 MPa·m1/2 for fracture toughness. With the increase of ZrB2 content, the Vickers hardness of the composites shows a near-linear increase from 15.3 GPa to 16.7 GPa. The strengthening and toughening effect can be ascribed to the unique mechanical properties of ZrB2 and ZrC reinforcements, the differences in coefficient of thermal expansion and modulus between them and Zr3[Al (Si)]4C6 matrix, fine grain strengthening and uniform microstructure derived by the in situ synthesis reaction.


2012 ◽  
Vol 1516 ◽  
pp. 255-260 ◽  
Author(s):  
G. Zhang ◽  
L. Hu ◽  
W. Hu ◽  
G. Gottstein ◽  
S. Bogner ◽  
...  

ABSTRACTMo fiber reinforced NiAl in-situ composites with a nominal composition Ni-43.8Al-9.5Mo (at.%) were produced by specially controlled directional solidification (DS) using a laboratory-scale Bridgman furnace equipped with a liquid metal cooling (LMC) device. In these composites, single crystalline Mo fibers were precipitated out through eutectic reaction and aligned parallel to the growth direction of the ingot. Mechanical properties, i.e. the creep resistance at high temperatures (HT, between 900 °C and 1200 °C) and the fracture toughness at room temperature (RT) of in-situ NiAl-Mo composites, were characterized by tensile creep (along the growth direction) and flexure (four-point bending, vertical to the growth direction) tests, respectively. In the current study, a steady creep rate of 10-6s-1 at 1100 °C under an initial applied tensile stress of 150MPa was measured. The flexure tests sustained a fracture toughness of 14.5 MPa·m1/2at room temperature. Compared to binary NiAl and other NiAl alloys, these properties showed a remarkably improvement in creep resistance at HT and fracture toughness at RT that makes this composite a potential candidate material for structural application at the temperatures above 1000 °C. The mechanisms responsible for the improvement of the mechanical properties in NiAl-Mo in-situ composites were discussed based on the investigation results.


2017 ◽  
Vol 727 ◽  
pp. 806-814 ◽  
Author(s):  
Xiao Wei Ma ◽  
Jian Xing Shen ◽  
Ke Chang Zhang ◽  
Ling Kai Kong ◽  
Jia Le Sun ◽  
...  

Here in, we report the porous bioceramic with Na2Ti6O13 rods prepared by in‒situ growth method. The samples were prepared using cold uniaxial pressing (40 MPa) technique and further sintered at different temperatures. The structure and morphology were characterized by XRD and SEM. The porosity, compressive strength and fracture toughness were also investigated. The bone-like apatite deposition ability of the fabricated ceramic samples was evaluated by Kokubo simulated body fluid (SBF) soaking method. The results indicated that the Na2Ti6O13 rods with about 1‒3 μm in diameter are uniformly distributed in the self‒toughness porous sodium titanate ceramics (SPSTC). The SPSTC with a porosity of 61.10±1.12 % exhibits good compressive strength (43.36±2.43 MPa) and fracture toughness (3.47±0.21 MPa·m1/2). The results indicate that the novel SPSTC scaffolds are promising for bone tissue engineering applications.


2015 ◽  
Vol 47 (3) ◽  
pp. 311-317 ◽  
Author(s):  
F. Wang ◽  
N. Fan ◽  
J. Zhu ◽  
H. Jiang

Al2O3/TiAl composites were successfully fabricated from powder mixtures of Ti, Al, TiO2, Cr2O3 and Nb2O5 by a hot-press-assisted exothermic dispersion method. The effect of the Cr2O3 and Nb2O5 addition on the microstructures and mechanical properties of Al2O3/TiAl composites was characterized. The results showed that the specimens are mainly composed of TiAl, Ti3Al, Al2O3, NbAl3 and Cr2Al. The Vicker-hardness and density of Al2O3/TiAl composites increase gradually with the increase of Nb2O5 content. When the Nb2O5 content was 6.54 wt %, the flexural strength and fracture toughness of the composites have a maximum values of 789.79 MPa and 9.69 MPa?m1/2, respectively. The improvement of mechanical properties is discussed in detail.


2004 ◽  
Vol 69 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Aleksandra Vuckovic ◽  
Snezana Boskovic ◽  
Ljiljana Zivkovic

The objective of this work was to investigate the effect of two different sintering additives (CeO2 and Y2O3 + Al2O3), sintering time and amount of ?-Si3N4 seeds on the densification, mechanical properties and microstructure of self-reinforced Si3N4 based composites obtained by pressureless sintering. Preparation of ?-Si3N4 seeds, also obtained by a pressureless sintering procedure, is described. Samples without seeds were prepared for comparison. The results imply that self-reinforced silicon nitride based composites with densities close to the theoretical values and with fracture toughness of 9.3MPa m1/2 can be obtained using a presureless sintering procedure.


2013 ◽  
Vol 38 (2) ◽  
pp. 142-150 ◽  
Author(s):  
LE Tam ◽  
P Bahrami ◽  
O Oguienko ◽  
H Limeback

SUMMARY Purpose Although damage to the structural integrity of the tooth is not usually considered a significant problem associated with tooth bleaching, there have been some reported negative effects of bleaching on dental hard tissues in vitro. More studies are needed to determine whether the observed in vitro effects have practical clinical implications regarding tooth structural durability. Objectives This in situ study evaluated the effect of 10% and 15% carbamide peroxide (CP) dental bleach, applied using conventional whitening trays by participants at home, on the fracture toughness of dentin. Methods Ninety-one adult volunteers were recruited (n ≈ 30/group). Compact fracture toughness specimens (approximately 4.5 × 4.6 × 1.7 mm) were prepared from the coronal dentin of recently extracted human molars and gamma-radiated. One specimen was fitted into a prepared slot, adjacent to a maxillary premolar, within a custom-made bleaching tray that was made for each adult participant. The participants were instructed to wear the tray containing the dentin specimen with placebo, 10% CP, or 15% CP treatment gel overnight for 14 nights and to store it in artificial saliva when not in use. Pre-bleach and post-bleach tooth color and tooth sensitivity were also evaluated using ranked shade tab values and visual analogue scales (VASs), respectively. Within 24–48 hours after the last bleach session, the dentin specimens were tested for fracture toughness using tensile loading at 10 mm/min. Analysis of variance, Kruskal-Wallis, χ2, Tukey's, and Mann-Whitney U tests were used for statistical analysis. The level of significance was set at p<0.05 for all tests, except for the Mann-Whitney U tests, which used a Bonferroni correction for post hoc analyses of the nonparametric data (p<0.017). Results The placebo, 10% CP, and 15% CP groups contained 30, 31, and 30 participants, respectively. Mean fracture toughness (+ standard deviation) for the placebo, 10% CP, and 15% CP groups were 2.3 ± 0.9, 2.2 ± 0.7, and 2.0 ± 0.5 MPa*m1/2 respectively. There were no significant differences in mean fracture toughness results among the groups (p=0.241). The tooth sensitivity VAS scores indicated a significantly greater incidence (p=0.000) and degree of tooth sensitivity (p=0.049 for VAS change and p=0.003 for max VAS) in the bleach groups than in the placebo group. The color change results showed generally greater color change in the bleach groups than in the placebo group (p=0.008 for shade guide determination and p=0.000 for colorimeter determination). Conclusions There were no significant differences in in situ dentin fracture toughness results among the groups. The results of this study provide some reassurance that dentin is not overtly weakened by the bleaching protocol used in this study. However, the lack of a statistically significant difference cannot be used to state that there is no effect of bleach on dentin fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document