Deformation characteristics of aluminium-copper composite preforms at different strain rates during cold forging

2017 ◽  
Vol 54 (1/2/3) ◽  
pp. 45
Author(s):  
Shrikant Jain ◽  
R.K. Ranjan ◽  
Surendra Kumar
2019 ◽  
Vol 92 ◽  
pp. 05008
Author(s):  
Zain Maqsood ◽  
Junichi Koseki ◽  
Hiroyuki Kyokawa

It has been unanimously acknowledged that the strength and deformation characteristics of bounded geomaterials, viz. cemented soils and natural rocks, are predominantly governed by the rate of loading/deformation. Rational evaluation of these time-dependent characteristics due to viscosity and ageing are vital for the reliable constitutive modelling. In order to study the effects of ageing and loading/strain rate (viscosity) on the behaviour of bounded geomaterials, a number of unconfined monotonic loading tests were performed on Gypsum Mixed Sand (GMS) specimens at a wide range of axial strain rates; ranging from 1.9E-05 to 5.3E+00 %/min (27,000 folds), and at different curing periods. The results indicate shifts in the viscous behaviour of GMS at critical strain rates of 2.0E-03 and 5.0E-01 %/min. In the light of this finding, the results are categorized into three discrete zones of strain rates, and the behaviour of GMS in each of these zones is discussed. A significant dependency of peak strength and stress-strain responses on strain rate was witnessed for specimens subjected to strain rates lesser than 2.0E-03 %/min, and the effects of viscosity/strain rate was found to be insignificant at strain rate higher than 5.0E-01%/min.


2017 ◽  
Vol 207 ◽  
pp. 1051-1056 ◽  
Author(s):  
Fanghui Jia ◽  
Jingwei Zhao ◽  
Liang Luo ◽  
Haibo Xie ◽  
Zhengyi Jiang

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1375
Author(s):  
Zhou Li ◽  
Haibo Xie ◽  
Fanghui Jia ◽  
Yao Lu ◽  
Xiangqian Yuan ◽  
...  

A new hot forming process of a hot-rolled 2205 duplex stainless/AH36 low-carbon steel bimetal composite (2205/AH36 BC) was proposed in this study, using the Gleeble 3500 thermal-mechanical simulator and hot bending tools. The deformation characteristics of 2205/AH36 BC were studied by hot tensile tests at temperatures from 950 to 1250 °C and strain rates ranging from 0.01 to 1 s−1. The tensile temperature has a great influence on the peak flow stress of the bimetal composite. The main microstructure evolution mechanisms, including dynamic recovery (DRV) and dynamic recrystallization (DRX), changed with the deformation temperatures. The different strain rates and the change of strain rates during the deformation process have an influence on the flow behavior of the bimetal composite. During the hot bending process, qualified parts could be formed successfully without obvious cracks in the interfacial zone. Phase and grain orientation spread (GOS) maps of specimens after hot tensile and forming tests were obtained by the electron backscatter diffraction (EBSD) technique to study the microstructure evolution, respectively. It is found that the effect of the working temperature on microstructure evolution is larger than that of the stacking sequence for 2205/AH36 BC. The considerable geometrically necessary dislocation (GND) accumulation occurs around the interface of 2205/AH36 BC under all imposed working conditions after the hot bending process, due to the interfacial micro-defects and complex stress states.


2011 ◽  
Vol 465 ◽  
pp. 419-422 ◽  
Author(s):  
Zoltán Száraz ◽  
Zuzanka Trojanová

The deformation characteristics of the WE54 magnesium alloy reinforced by 13% of SiC particles have been investigated in tension at elevated temperatures. Composite material was prepared by powder metallurgy technique. The strain rate sensitivity parameter m has been estimated by the abrupt strain rate changes (SRC) method. SRC tests and tensile tests with constant strain rate ( ) were performed at temperatures from 350 to 500 °C. Increased ductility has been found at high strain rates. The corresponding m value was 0.3. The activation energy Q has been estimated. Microstructure evolution has been observed by the light microscope and scanning electron microscope.


2020 ◽  
Vol 20 (7) ◽  
pp. 4509-4512
Author(s):  
Jae-Yeol Jeon ◽  
Cheol-Woo Kim ◽  
Hyo-Sang Yoo ◽  
Jae-Ik Cho ◽  
Dae-Geun Kim

The hot deformation characteristics of an UNS No. S32205 grade duplex stainless steel with nitrogen content of 0.17 ms% was studied over the ranges of temperature from 800 to 1200 °C and strain rates from 0.001 to 1.0 s−1 at the total strain of 0.5 by the hot compression test to draw the processing map. The obtained map was discussed in combinations of microstructural observations and TEM analysis. The optimum hot working region is the temperatures from 950 to 1200 °C regardless of the strain rates without cracks and sigma precipitates.


Sign in / Sign up

Export Citation Format

Share Document