Enhanced Plasticity of WE54/SiC Composite Prepared by Powder Metallurgy

2011 ◽  
Vol 465 ◽  
pp. 419-422 ◽  
Author(s):  
Zoltán Száraz ◽  
Zuzanka Trojanová

The deformation characteristics of the WE54 magnesium alloy reinforced by 13% of SiC particles have been investigated in tension at elevated temperatures. Composite material was prepared by powder metallurgy technique. The strain rate sensitivity parameter m has been estimated by the abrupt strain rate changes (SRC) method. SRC tests and tensile tests with constant strain rate ( ) were performed at temperatures from 350 to 500 °C. Increased ductility has been found at high strain rates. The corresponding m value was 0.3. The activation energy Q has been estimated. Microstructure evolution has been observed by the light microscope and scanning electron microscope.

1993 ◽  
Vol 305 ◽  
Author(s):  
J. C. Arnold ◽  
A. R. Eccott

AbstractThe effects of physical ageing and prior immersion time on the ESC behaviour of polycarbonate in ethanol were studied. Constant strain rate tensile tests were performed at a range of strain rates for samples with ageing times varying from 100 hours to 3000 hours and for prior immersion times of between 1 hour and 500 hours. Comparison of tests performed in ethanol and in air gave a good indication of the point of craze initiation. The results showed that there was a reduction in strain to crazing as the strain rate decreased, apart from with the lowest strain rate used. A longer prior immersion time also promoted craze formation. Both of these results are attributable to diffusion effects. Physical ageing had little effect on the ESC behaviour, due to the large amounts of deformation encountered in this system.


2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


1972 ◽  
Vol 94 (1) ◽  
pp. 207-212 ◽  
Author(s):  
D. P. Kendall

The effect of elastic strain rates ranging from 10−14 to 10 sec−1 and temperatures ranging from 200 K (−100 F) to 590 K (600 F) on the yield strength of several steels is reported. The steels utilized are a 1018 mild steel, 4340 steel, H-11 tool steel, and 300 grade maraging steel. The results are interpreted in terms of the Cottrell-Bilby yielding model based on release of dislocations from locking carbon atmospheres. The results for all of the materials except the maraging steel are consistent with this model if it is modified to account for relocking of dislocations by migration of carbon atoms. The maraging steel shows a constant strain rate sensitivity at a constant temperature, over the range of strain rates investigated. This rate sensitivity decreases with increasing temperature and at 590 K (600 F) a decreasing strength with increasing strain rate is found. This is attributed to stress aging effects.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2098 ◽  
Author(s):  
Olga Yakovtseva ◽  
Maria Sitkina ◽  
Ahmed O. Mosleh ◽  
Anastasia Mikhaylovskaya

Increasing the strain rate at superplastic forming is a challenging technical and economic task of aluminum forming manufacturing. New aluminum sheets exhibiting high strain rate superplasticity at strain rates above 0.01 s−1 are required. This study describes the microstructure and the superplasticity properties of a new high-strength Al-Zn-Mg-based alloy processed by a simple thermomechanical treatment including hot and cold rolling. The new alloy contains Ni to form Al3Ni coarse particles and minor additions of Zr (0.19 wt.%) and Sc (0.06 wt.%) to form nanoprecipitates of the L12-Al3 (Sc,Zr) phase. The design of chemical and phase compositions of the alloy provides superplasticity with an elongation of 600–800% in a strain rate range of 0.01 to 0.6/s and residual cavitation less than 2%. A mean elongation-to-failure of 400% is observed at an extremely high constant strain rate of 1 s−1. The strain-induced evolution of the grain and dislocation structures as well as the L12 precipitates at superplastic deformation is studied. The dynamic recrystallization at superplastic deformation is confirmed. The superplastic flow behavior of the proposed alloy is modeled via a mathematical Arrhenius-type constitutive model and an artificial neural network model. Both models exhibit good predictability at low and high strain rates of superplastic deformation.


2020 ◽  
pp. 089270572094422
Author(s):  
Mohammadali Shirinbayan ◽  
Joseph Fitoussi ◽  
Farid Kheradmand ◽  
Arash Montazeri ◽  
Peiyuan Zuo ◽  
...  

Influence of loading temperature on the damage mechanism of polyphenylene sulfide (PPS) reinforced by glass fiber (PPS/GF30) under tension was experimentally studied from quasi-static (QS) to high strain rates. Two kinds of PPS/GF30 samples were prepared: PPS-0° and PPS-90° (correspond to fibers oriented parallel and perpendicular to the injection direction, respectively). After microscopic observation and thermomechanical characterizations by dynamic mechanical analysis, tensile tests up to failure with strain rates varying from 10−3 s−1 to 100 s−1 have been carried out at 25°C and 120°C with regard to PPS/GF30 glass transition temperature. To achieve the coupling effect of high strain rate and high temperature, a special chamber was designed to install on the servo-hydraulic machine. The results of QS tensile tests confirm the significant effect of fiber orientation and temperature on the Young’s modulus, the ultimate stress, and strain. High strain tensile test results showed that the PPS/GF30 composite is strain rate dependent at both temperatures. The results indicated that Young’s modulus remains constant by strain rate increasing at both temperatures while ultimate stress and strain are increased. No significant damage has been observed at 25°C in QS loading, whereas the macroscopic damage variable is increased to 20% at 120°C. Debonding at the fiber–matrix interface is the main damage mechanism at 120°C.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Tao-Hsing Chen ◽  
Chih-Kai Tsai ◽  
Te-Hua Fang

The high strain shear rate behaviour of Inconel 690 alloy was investigated by using the split Hopkinson torsional bar. The shear strain rates were tested at 900 s−1, 1900 s−1, and 2600 s−1and at temperatures of −100°C, 25°C, and 300°C, respectively. It was found that the dynamic shear behaviour of Inconel 690 alloy was sensitive to strain rate and temperature. The fracture shear strain increased with increasing strain rate and temperature. In addition, the strain rate sensitivity was increased with increasing strain and strain rate but decreased with increasing temperature. Finally, the fracture surfaces were found to contain dimple-like features, and the dimple density increased with increasing strain rate and temperature.


2008 ◽  
Vol 23 (12) ◽  
pp. 3295-3302 ◽  
Author(s):  
B. Erdem Alaca ◽  
K. Bugra Toga ◽  
Orhan Akar ◽  
Tayfun Akin

A closed-loop approach is adopted to implement strain rate control during the bulge test. Due to the difficulty of measuring strains directly, the technique is based on the conversion of displacement measurements to the corresponding strains using the plane-strain formulation. The necessary temporal evolution of the midpoint displacement of a rectangular diaphragm is derived under the condition of constant strain rate and is imposed as a control criterion. The technique is demonstrated on 500-nm-thick Au diaphragms by applying strain rates ranging from 2 × 10−6 to 2 × 10−4 s–1. By measuring the corresponding yield strength values, a strain rate sensitivity of 0.11 is obtained, which is close to what was previously reported on similar specimens using the microbending test.


2015 ◽  
Vol 639 ◽  
pp. 309-316
Author(s):  
Sergio Pellegrino ◽  
Livan Fratini ◽  
Marion Merklein ◽  
Wolfgang Böhm ◽  
Hung Nguyen

Focus of this paper is to model the plastic forming behavior of AA6082, in order to develop the numerical FE analysis of the friction stir welding processes and the simulation of subsequent forming processes. During the friction stir welding process, the temperatures reached are until 500 °C and have a fundamental role for the correct performance of the process so the material data has to show a temperature dependency. Because of the tool rotation a strain rate sensitivity of the material has to be respected as well. In this context, the general material characteristics of AA6082 were first identified for different stress states. For the uniaxial state the standard PuD-Al used in the automotive industry was applied, for the shear state the ASTM B831-05 was used and for biaxial states the ISO 16842 was exploited. To characterize the plastic flow behavior of the AA6082 at elevated temperatures tensile tests were performed according to DIN EN ISO 6892-2 from 25 °C until 500 °C with a strain rate from 0.1 s-1up to 6.5 s-1.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1301
Author(s):  
Patrick Striemann ◽  
Lars Gerdes ◽  
Daniel Huelsbusch ◽  
Michael Niedermeier ◽  
Frank Walther

Additive manufacturing of polymers via material extrusion and its future applications are gaining interest. Supporting the evolution from prototype to serial applications, additional testing conditions are needed. The additively manufactured and anisotropic polymers often show a weak point in the interlayer contact area in the manufacturing direction. Different process parameters, such as layer height, play a key role for generating the interlayer contact area. Since the manufacturing productivity depends on the layer height as well, a special focus is placed on this process parameter. A small layer height has the objective of achieving better material performance, whereas a larger layer height is characterized by better economy. Therefore, the capability- and economy-oriented variation was investigated for strain rates between 2.5 and 250 s−1 under tensile and shear load conditions. The test series with dynamic loadings were designed monitoring future applications. The interlayer tensile tests were performed with a special specimen geometry, which enables a correction of the force measurement. By using a small specimen geometry with a force measurement directly on the specimen, the influence of travelling stress waves, which occur due to the impact at high strain rates, is reduced. The interlayer tensile tests indicate a strain rate dependency of additively manufactured polymers. The capability-oriented variation achieves a higher ultimate tensile and shear strength compared to the economy-oriented variation. The external and internal quality assessment indicates an increasing primary surface profile and void volume content for increasing the layer height.


2004 ◽  
Vol 120 ◽  
pp. 169-175
Author(s):  
R. Ossenbrink ◽  
H. Wohlfahrt ◽  
V. Michailov

As a result of high temperature changing rates in the heat affected zone (HAZ) the elevated strain rates during welding may have a high influence of the yield stresses. Higher yield stresses as a result of high strain rates can be observed in hot tensile tests for several materials. A model has been developed and integrated in a multi-purpose FEA-program (ANSYS®) to investigate strain rate effects in numerical welding simulation. The routine calculates the current yield stress as a function of the local strain rates. The influence of the resulting stresses and distortions has been analyzed in comparative numerical welding simulations.


Sign in / Sign up

Export Citation Format

Share Document