An evaluation of the seismic response modification factor R for RC special moment-resisting frame system

2015 ◽  
Vol 6 (4) ◽  
pp. 368 ◽  
Author(s):  
Rania Al Ahmar ◽  
Mohammad Al Samara
Author(s):  
Sita Ramandhani Arumsari Susanto ◽  
Koespiadi Koespiadi

Indonesia has a high earthquake risk, therefore several buildings in Indonesia are designed with seismic retention systems where the column structure is designed to be stronger than the beam. The calculation of apartment building structure in this final design is based on SNI 1726:2012 and SNI 2847:2013. The method used in this calculation is the Special Moment Resisting Frame System (SMRFS) because the building area is included in the category of E seismic design which is a type of soft soil. The Special Moment Resisting Frame System is designed so that the building has more strength to withstand earthquakes, especially the column structure. This building is classified as a high-level building, therefore the analysis of seismic load is carried out by Spectrum Response Dynamic, using the SRSS (Square Root of the Sum Squares) method because the building structure has far-flung natural vibration times. In high-rise buildings, it is necessary to control the displacement between floors to reduce the large sway on each floor. The displacement between floors resulting from elastic analysis is less than the maximum allowable intersection between floors. so that the building structure is still safe against swaying.  


2020 ◽  
Vol 32 (6) ◽  
pp. 575-582
Author(s):  
Muhmmad Haroon ◽  
Hyun-Woo Byun ◽  
Bum-Sik Lee ◽  
Kil-Hee Kim ◽  
Jung-Yoon Lee

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Nur Laeli Hajati ◽  
Rizki Noviansyah

ABSTRACTMoment Resisting Frame System (SRPM) is one of the earthquake resistant structural systems that is often used in Indonesia. SRPM is classified into three types are Ordinary Moment Resisting Frame System (SRPMB), Intermediate Moment Resisting Frame System (SRPMM), and Special Moment Resisting Frame System (SRPMK). In this final project, the structure of the building is modeled with SRPMM and SRPMK in areas with high seismicity (Seismic Design Category D) in the city of Yogyakarta, then compared the behavior of the structure between the two models. The result of this research is SRPMM which its purpose for medium earthquake area, can still give good performance which is indicated by fulfillment of design requirement, performance when performance point is in Immadiate Occupancy condition up to Life Safe, and give good ductility value when Collapse occurred.Keywords: intermediate moment resisting frame system, special moment resisting frame system, performance point, ductilityABSTRAKSistem Rangka Pemikul Momen (SRPM) adalah salah satu sistem struktur penahan gempa yang sering digunakan di Indonesia. SRPM dibagi menjadi tiga jenis yaitu Sistem Rangka Pemikul Momen Biasa (SRPMB), Sistem Rangka Pemikul Momen Menengah (SRPMM), dan Sistem Rangka Pemikul Momen Khusus (SRPMK). Dalam tugas akhir ini struktur gedung dimodelkan dengan SRPMM dan SRPMK pada wilayah dengan tingkat kegempaan tinggi (Kategori Desain Seismik D) dikota Yogyakarta, kemudian dibandingkan perilaku struktur antara kedua model tersebut. Hasil dari penelitian ini adalah SRPMM yang peruntukannya untuk wilayah gempa sedang, tetap dapat memberikan kinerja cukup baik yang ditunjukkan dengan terpenuhinya persyaratan-persyaratan desain, kinerja pada saat performance point berada pada kondisi Immadiate Occupancy sampai dengan Life Safe, serta memberikan nilai daktilitas yang baik ketika terjadi keruntuhan.Kata kunci: SRPMM, SRPMK, performance point, daktilitas.


2008 ◽  
Vol 30 (12) ◽  
pp. 3681-3707 ◽  
Author(s):  
Arturo Tena-Colunga ◽  
Héctor Correa-Arizmendi ◽  
José Luis Luna-Arroyo ◽  
Gonzalo Gatica-Avilés

10.29007/q8wl ◽  
2018 ◽  
Author(s):  
Nirav K. Patel ◽  
Prutha Vyas

Conventional seismic analysis of structure incorporates only elastic response of the structure. To understand nonlinear response of the structure, Performance Based Design (PBD) approach is widely used. PBD includes Pushover analysis i.e. nonlinear static analysis, which shows the post-elastic behaviour of the structure. IS 1893-2002 incorporates the nonlinear response of a structure considering response reduction factor (R) so that a linear elastic force based approach can be used for design. The response modification factor plays a key role in the seismic design of new buildings. However, the Indian code does not provide information on the components of R factor. The values assigned to this factor is based on engineering judgment. The study includes the calculation of value R based on different components as per ATC-19 and compares values of R for Special Moment resisting frame (SMRF) and Ordinary Moment resisting frames (OMRF) for two different seismic zones. An improvement in the reliability of modern earthquake-resistant buildings will require the systematic evaluation of the building response characteristics, which mostly affects the values assigned to the factor.


Sign in / Sign up

Export Citation Format

Share Document