scholarly journals Kajian Perilaku Struktur Portal Beton Bertulang Tipe SRPMK dan Tipe SRPMM

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Nur Laeli Hajati ◽  
Rizki Noviansyah

ABSTRACTMoment Resisting Frame System (SRPM) is one of the earthquake resistant structural systems that is often used in Indonesia. SRPM is classified into three types are Ordinary Moment Resisting Frame System (SRPMB), Intermediate Moment Resisting Frame System (SRPMM), and Special Moment Resisting Frame System (SRPMK). In this final project, the structure of the building is modeled with SRPMM and SRPMK in areas with high seismicity (Seismic Design Category D) in the city of Yogyakarta, then compared the behavior of the structure between the two models. The result of this research is SRPMM which its purpose for medium earthquake area, can still give good performance which is indicated by fulfillment of design requirement, performance when performance point is in Immadiate Occupancy condition up to Life Safe, and give good ductility value when Collapse occurred.Keywords: intermediate moment resisting frame system, special moment resisting frame system, performance point, ductilityABSTRAKSistem Rangka Pemikul Momen (SRPM) adalah salah satu sistem struktur penahan gempa yang sering digunakan di Indonesia. SRPM dibagi menjadi tiga jenis yaitu Sistem Rangka Pemikul Momen Biasa (SRPMB), Sistem Rangka Pemikul Momen Menengah (SRPMM), dan Sistem Rangka Pemikul Momen Khusus (SRPMK). Dalam tugas akhir ini struktur gedung dimodelkan dengan SRPMM dan SRPMK pada wilayah dengan tingkat kegempaan tinggi (Kategori Desain Seismik D) dikota Yogyakarta, kemudian dibandingkan perilaku struktur antara kedua model tersebut. Hasil dari penelitian ini adalah SRPMM yang peruntukannya untuk wilayah gempa sedang, tetap dapat memberikan kinerja cukup baik yang ditunjukkan dengan terpenuhinya persyaratan-persyaratan desain, kinerja pada saat performance point berada pada kondisi Immadiate Occupancy sampai dengan Life Safe, serta memberikan nilai daktilitas yang baik ketika terjadi keruntuhan.Kata kunci: SRPMM, SRPMK, performance point, daktilitas.

Author(s):  
Sita Ramandhani Arumsari Susanto ◽  
Koespiadi Koespiadi

Indonesia has a high earthquake risk, therefore several buildings in Indonesia are designed with seismic retention systems where the column structure is designed to be stronger than the beam. The calculation of apartment building structure in this final design is based on SNI 1726:2012 and SNI 2847:2013. The method used in this calculation is the Special Moment Resisting Frame System (SMRFS) because the building area is included in the category of E seismic design which is a type of soft soil. The Special Moment Resisting Frame System is designed so that the building has more strength to withstand earthquakes, especially the column structure. This building is classified as a high-level building, therefore the analysis of seismic load is carried out by Spectrum Response Dynamic, using the SRSS (Square Root of the Sum Squares) method because the building structure has far-flung natural vibration times. In high-rise buildings, it is necessary to control the displacement between floors to reduce the large sway on each floor. The displacement between floors resulting from elastic analysis is less than the maximum allowable intersection between floors. so that the building structure is still safe against swaying.  


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Mahdi Heshmati ◽  
Alireza Khatami ◽  
Hamzeh Shakib

AbstractThis study presents the impact of near-field and far-field earthquakes on the seismic design of Intermediate Moment Resisting Frame (IMRF) and Special Moment Resisting Frame (SMRF) structures through FEMA (Federal Emergency Management Agency) P695 methodology to highlight the importance of probabilistic collapse as well as seismic performance factors of these structures. The purpose of this study is to investigate the collapse performance of steel intermediate and special moment resisting frame systems as the most common structural systems in urban areas in order to assess the seismic performance factors used for the design using nonlinear static and dynamic analysis methods. In this regard, as the representatives of low-rise to high-rise buildings, archetypes with 5-, 10- and 15- story of intermediate and special moment resisting frames are designed and then the nonlinear models are developed in OpenSees software. Nonlinear static analyses are performed to assess the overstrength and ductility of these systems. The effects of near-field and far-field ground motions on these frames are investigated through incremental dynamic analysis. These analyses are performed with 22 far-field and 20 near-field ground motion records using FEMA P695 methodology. The results show that near-field earthquakes have serious impacts on the collapse probability of structures. The superiority of special moment resisting frame over intermediate moment resisting frame is quantified in terms of safety margin and median collapse capacity under both near-field and far-field earthquakes. Finally, the results indicate that the response modification factors introduced in seismic design code are acceptable for intermediate moment resisting frame and special moment resisting frame under far-field ground motions. However, in the near-field sites while SMRF system meets the requirements of FEMA P695 methodology, the IMRF system does not satisfy these criteria.


2008 ◽  
Vol 30 (12) ◽  
pp. 3681-3707 ◽  
Author(s):  
Arturo Tena-Colunga ◽  
Héctor Correa-Arizmendi ◽  
José Luis Luna-Arroyo ◽  
Gonzalo Gatica-Avilés

1989 ◽  
Vol 5 (2) ◽  
pp. 409-427 ◽  
Author(s):  
Charles W. Roeder ◽  
James E. Carpenter ◽  
Hidetake Taniguchi

Recent changes to the United States seismic design provisions permit the use of weak column-strong beam steel moment resisting frames. This design concept has not been used in the past, because it results in plastic hinges in the columns during moderate or extreme earthquakes. This paper shows the results of inelastic dynamic response calculations on a weak column frame and a comparable strong column system. The results show that the ductility demand is much greater for the weak column strong beam framing system with some acceleration records. The required ductility is then compared for the different structural systems and both are compared to the results of experiments. The comparison suggests that the weak column system may not be able to develop the required ductility. The results of this paper should help define the viability and limits in applicability of the weak column system.


1996 ◽  
Vol 23 (3) ◽  
pp. 727-756 ◽  
Author(s):  
Robert Tremblay ◽  
Andre Filiatrault ◽  
Michel Bruneau ◽  
Masayoshi Nakashima ◽  
Helmut G. L. Prion ◽  
...  

Past and current seismic design provisions for steel structures in Japan are presented and compared with Canadian requirements. The performance of steel framed structures during the January 17, 1995, Hyogo-ken Nanbu earthquake is described. Numerous failures and examples of inadequate behaviour could be observed in buildings of various ages, sizes, and heights, and braced with different structural systems. In moment resisting frames, the damage included failures of beams, columns, beam-to-column connections, and column bases. Fracture of bracing members or their connections was found in concentrically braced frames. The adequacy of the current Canadian seismic design provisions is examined in view of the observations made. Key words: earthquake, seismic design, steel structures.


Sign in / Sign up

Export Citation Format

Share Document