ESTIMATION OF NITROGEN CONTENTS IN ALKALI METALS BY THE FOIL EQUILIBRATION METHOD

Author(s):  
H.U. Borgstedt ◽  
T. Gnanasekaran
2016 ◽  
Vol 6 (2) ◽  
pp. 942-952
Author(s):  
Xicun ZHU ◽  
Zhuoyuan WANG ◽  
Lulu GAO ◽  
Gengxing ZHAO ◽  
Ling WANG

The objective of the paper is to explore the best phenophase for estimating the nitrogen contents of apple leaves, to establish the best estimation model of the hyperspectral data at different phenophases. It is to improve the apple trees precise fertilization and production management. The experiments were done in 20 orchards in the field, measured hyperspectral data and nitrogen contents of apple leaves at three phenophases in two years, which were shoot growth phenophase, spring shoots pause growth phenophase, autumn shoots pause growth phenophase. The study analyzed the nitrogen contents of apple leaves with its original spectral and first derivative, screened sensitive wavelengths of each phenophase. The hyperspectral parameters were built with the sensitive wavelengths. Multiple stepwise regressions, partial least squares and BP neural network model were adopted in the study. The results showed that 551 nm, 716 nm, 530 nm, 703 nm; 543 nm, 705 nm, 699 nm, 756 nm and 545 nm, 702 nm, 695 nm, 746 nm were sensitive wavelengths of three phenophases. R551+R716, R551*R716, FDR530+FDR703, FDR530*FDR703; R543+R705, R543*R705, FDR699+FDR756, FDR699*FDR756and R545+R702, R545*R702, FDR695+FDR746, FDR695*FDR746 were the best hyperspectral parameters of each phenophase. Of all the estimation models, the estimated effect of shoot growth phenophase was better than other two phenophases, so shoot growth phenophase was the best phenophase to estimate the nitrogen contents of apple leaves based on hyperspectral models. In the three models, the 4-3-1 BP neural network model of shoot growth phenophase was the best estimation model. The R2 of estimated value and measured value was 0.6307, RE% was 23.37, RMSE was 0.6274.


2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


2016 ◽  
Vol 58 (6) ◽  
pp. 489-494 ◽  
Author(s):  
Panyasak Phakpeetinan ◽  
Amnuysak Chianpairot ◽  
Ekkarut Viyanit ◽  
Fritz Hartung ◽  
Gobboon Lothongkum

Alloy Digest ◽  
2009 ◽  
Vol 58 (1) ◽  

Abstract URANUS 76N contains high chromium, molybdenum, and nitrogen contents and has a pitting resistance equivalent number (PREN) ≥ 40. These factors explain why the duplex austenitic/ferritic stainless grade is very resistant to localized corrosion. The alloy has been used for offshore applications. This datasheet provides information on composition, physical properties, tensile properties, and shear strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1028. Producer or source: Industeel USA, LLC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lilla Fijołek ◽  
Joanna Świetlik ◽  
Marcin Frankowski

AbstractIn water treatment technology, activated carbons are used primarily as sorbents to remove organic impurities, mainly natural organic matter, but also as catalysts in the ozonation process. Commercially available activated carbons are usually contaminated with mineral substances, classified into two main groups: alkali metals (Ca, Na, K, Li, Mg) and multivalent metals (Al, Fe, Ti, Si). The presence of impurities on the carbon surface significantly affects the pHpzc values determined for raw and ozonated carbon as well as their acidity and alkalinity. The scale of the observed changes strongly depends on the pH of the ozonated system, which is related to the diffusion of impurities from the carbon to the solution. In an acidic environment (pH 2.5 in this work), the ozone molecule is relatively stable, yet active carbon causes its decomposition. This is the first report that indirectly indicates that contaminants on the surface of activated carbon (multivalent elements) contribute to the breakdown of ozone towards radicals, while the process of ozone decomposition by purified carbons does not follow the radical path in bulk solution. Carbon impurities also change the distribution of the reaction products formed by organic pollutants ozonation, which additionally confirms the radical process. The study showed that the use of unpurified activated carbon in the ozonation of succinic acid (SA) leads to the formation of a relatively large amount of oxalic acid (OA), which is a product of radical SA degradation. On the other hand, in solutions with purified carbon, the amount of OA generated is negligible.


Sign in / Sign up

Export Citation Format

Share Document