On Artin L-series of irreducible characters of the symmetric group Sn

Author(s):  
G. O. Michler
2015 ◽  
Vol 13 (07) ◽  
pp. 1550049
Author(s):  
Haixia Chang ◽  
Vehbi E. Paksoy ◽  
Fuzhen Zhang

By using representation theory and irreducible characters of the symmetric group, we introduce character dependent states and study their entanglement via geometric measure. We also present a geometric interpretation of generalized matrix functions via this entanglement analysis.


2013 ◽  
Vol 06 (03) ◽  
pp. 1350033 ◽  
Author(s):  
Yousef Zamani ◽  
Esmaeil Babaei

In this paper, we obtain the dimensions of symmetry classes of polynomials with respect to the irreducible characters of the dicyclic group as a subgroup of the full symmetric group. Then we discuss the existence of o-basis of these classes. In particular, the existence of o-basis of symmetry classes of polynomials with respect to the irreducible characters of the generalized quaternion group are concluded.


1998 ◽  
Vol 50 (1) ◽  
pp. 167-192 ◽  
Author(s):  
Tom Halverson ◽  
Arun Ram

AbstractIwahori-Hecke algebras for the infinite series of complex reflection groups G(r, p, n) were constructed recently in the work of Ariki and Koike [AK], Broué andMalle [BM], and Ariki [Ari]. In this paper we give Murnaghan-Nakayama type formulas for computing the irreducible characters of these algebras. Our method is a generalization of that in our earlier paper [HR] in whichwe derivedMurnaghan-Nakayama rules for the characters of the Iwahori-Hecke algebras of the classical Weyl groups. In both papers we have been motivated by C. Greene [Gre], who gave a new derivation of the Murnaghan-Nakayama formula for irreducible symmetric group characters by summing diagonal matrix entries in Young's seminormal representations. We use the analogous representations of the Iwahori-Hecke algebra of G(r, p, n) given by Ariki and Koike [AK] and Ariki [Ari].


10.37236/1471 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
Ernesto Vallejo

F. Murnaghan observed a long time ago that the computation of the decompositon of the Kronecker product $\chi^{(n-a, \lambda_2, \dots )}\otimes \chi^{(n-b, \mu_2, \dots)}$ of two irreducible characters of the symmetric group into irreducibles depends only on $\overline\lambda=(\lambda_2,\dots )$ and $\overline\mu =(\mu_2,\dots )$, but not on $n$. In this note we prove a similar result: given three partitions $\lambda$, $\mu$, $\nu$ of $n$ we obtain a lower bound on $n$, depending on $\overline\lambda$, $\overline\mu$, $\overline\nu$, for the stability of the multiplicity $c(\lambda,\mu,\nu)$ of $\chi^\nu$ in $\chi^\lambda \otimes \chi^\mu$. Our proof is purely combinatorial. It uses a description of the $c(\lambda,\mu,\nu)$'s in terms of signed special rim hook tabloids and Littlewood-Richardson multitableaux.


10.37236/1501 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Robert Gill

Given an integer $n\geq 2$, and a non-negative integer $k$, consider all affine hyperplanes in ${\bf R}^n$ of the form $x_i=x_j +r$ for $i,j\in[n]$ and a non-negative integer $r\leq k$. Let $\Pi_{n,k}$ be the poset whose elements are all nonempty intersections of these affine hyperplanes, ordered by reverse inclusion. It is noted that $\Pi_{n,0}$ is isomorphic to the well-known partition lattice $\Pi_n$, and in this paper, we extend some of the results of $\Pi_n$ by Hanlon and Stanley to $\Pi_{n,k}$. Just as there is an action of the symmetric group ${S}_n$ on $\Pi_n$, there is also an action on $\Pi_{n,k}$ which permutes the coordinates of each element. We consider the subposet $\Pi_{n,k}^\sigma$ of elements that are fixed by some $\sigma\in {S}_n$, and find its Möbius function $\mu_\sigma$, using the characteristic polynomial. This generalizes what Hanlon did in the case $k=0$. It then follows that $(-1)^{n-1}\mu_\sigma(\Pi_{n,k}^\sigma)$, as a function of $\sigma$, is the character of the action of ${S}_n$ on the homology of $\Pi_{n,k}$. Let $\Psi_{n,k}$ be this character times the sign character. For ${C}_n$, the cyclic group generated by an $n$-cycle $\sigma $ of ${S}_n$, we take its irreducible characters and induce them up to ${S}_n$. Stanley showed that $\Psi_{n,0}$ is just the induced character $\chi\uparrow_{{C}_n}^{{S}_n}$ where $\chi(\sigma)=e^{2\pi i/n}$. We generalize this by showing that for $k>0$, there exists a non-negative integer combination of the induced characters described here that equals $\Psi_{n,k}$, and we find explicit formulas. In addition, we show another way to prove that $\Psi_{n,k}$ is a character, without using homology, by proving that the derived coefficients of certain induced characters of ${S}_n$ are non-negative integers.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Guillaume Chapuy ◽  
Valentin Feray ◽  
Eric Fusy

International audience We consider unicellular maps, or polygon gluings, of fixed genus. In FPSAC '09 the first author gave a recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting formulas for these objects. In this paper, we give another bijection that explicitly describes the ``recursive part'' of the first bijection. As a result we obtain a very simple description of unicellular maps as pairs made by a plane tree and a permutation-like structure. All the previously known formulas follow as an immediate corollary or easy exercise, thus giving a bijective proof for each of them, in a unified way. For some of these formulas, this is the first bijective proof, e.g. the Harer-Zagier recurrence formula, or the Lehman-Walsh/Goupil-Schaeffer formulas. Thanks to previous work of the second author this also leads us to a new expression for Stanley character polynomials, which evaluate irreducible characters of the symmetric group. Nous considèrons des cartes orientèes à une face de genre fixé. à SFCA'09 le premier auteur a introduit une bijection rècursive envoyant une carte unicellulaire vers un arbre, ce qui permet d'obtenir des formules ènumèratives pour les cartes à une face (et en particulier la prèsence des nombres de Catalan). Dans l'article ici prèsent, et en nous appuyant sur la bijection ci-dessus, nous obtenons une incarnation très simple des cartes à une face comme des paires formèes d'un arbre plan et d'une permutation d'un certain type. Toutes les formules prècèdemment connues dècoulent aisèment de cette nouvelle incarnation, donnant des preuves bijectives dans un cadre unifié. Pour certaines de ces formules, telles que la rècurrence de Harer-Zagier ou les formules de Lehman-Walsh/Goupil-Schaeffer, nous obtenons la première preuve bijective connue. Par ailleurs, en combinant notre approche avec des travaux du second auteur, nous obtenons une nouvelle expression pour les polynômes de Stanley qui donnent certaines èvaluations des caractères du groupe symètrique.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Ekaterina A. Vassilieva

International audience This paper is devoted to the computation of the number of ordered factorizations of a long cycle in the symmetric group where the number of factors is arbitrary and the cycle structure of the factors is given. Jackson (1988) derived the first closed form expression for the generating series of these numbers using the theory of the irreducible characters of the symmetric group. Thanks to a direct bijection we compute a similar formula and provide the first purely combinatorial evaluation of these generating series. Cet article est dédié au calcul du nombre de factorisations d’un long cycle du groupe symétrique pour lesquels le nombre de facteurs est arbitraire et la structure des cycles des facteurs est donnée. Jackson (1988) a dérivé la première expression compacte pour les séries génératrices de ces nombres en utilisant la théorie des caractères irréductibles du groupe symétrique. Grâce à une bijection directe nous démontrons une formule similaire et donnons ainsi la première évaluation purement combinatoire de ces séries génératrices.


10.37236/3226 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Alejandro H. Morales ◽  
Ekaterina A. Vassilieva

We evaluate combinatorially certain connection coefficients of the symmetric group that count the number of factorizations of a long cycle as a product of three permutations. Such factorizations admit an important topological interpretation in terms of unicellular constellations on orientable surfaces. Algebraic computation of these coefficients was first done by Jackson using irreducible characters of the symmetric group. However, bijective computations of these coefficients are so far limited to very special cases. Thanks to a new bijection that refines the work of Schaeffer and Vassilieva, we give an explicit closed form evaluation of the generating series for these coefficients. The main ingredient in the bijection is a modified oriented tricolored tree tractable to enumerate. Finally, reducing this bijection to factorizations of a long cycle into two permutations, we get the analogue formula for the corresponding generating series.


Sign in / Sign up

Export Citation Format

Share Document