scholarly journals Positive Regulation of Macromolecule Metabolic Process Belongs to the Main Mechanisms Crucial for Porcine Oocytes Maturation

2017 ◽  
Vol 5 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Wiesława Kranc ◽  
Piotr Celichowski ◽  
Joanna Budna ◽  
Ronza Khozmi ◽  
Artur Bryja ◽  
...  

SummaryThe mammalian oocytes maturation is the compound process that involves morphological and molecular changes. These modifications include storage of macromolecules, which are crucial for proteins biosynthesis during periimplantation stages of embryo development. This study was aimed to investigate the genes expression profile encoding macromolecules important for regulation of proper porcine oocytes maturation.The porcine oocytes were collected from large ovarian follicles and analyzed both before and after in vitro maturation (IVM). Additionally, to check the developmental competence status, brilliant crezyl blue test (BCB) was performed. The obtained cDNA was used for biotin labeling and fragmentation by AffymetrixGeneChip® WT Terminal Labeling and Hybridization (Affymetrix). The preliminary analysis of the scanned chips was performed using AffymetrixGeneAtlasTM Operating Software. The created CEL files were imported into downstream data analysis software.In results, we found expression of 419 different genes, 379 genes were down-regulated and 40 genes were up-regulated in relation to the oocyte transcriptome before in vitro procedure. We observed up-regulation of all genes involved in “positive regulation of macromolecule metabolic process” before IVM as compared to transcriptional profile analyzed after IVM.In conclusion, we suggested that genes encoding proteins involved in macromolecule metabolism are important for achieving of porcine oocytes maturational stage. Moreover, the “activity of macromolecules metabolism” is much more increased in immature oocytes.

2010 ◽  
Vol 22 (1) ◽  
pp. 260
Author(s):  
M. Bertoldo ◽  
P. K. Holyoake ◽  
G. Evans ◽  
C. G. Grupen

Effective in vitro maturation (IVM) is essential for successful in vitro embryo production. The morphology of the cumulus investment before and after IVM may be a useful noninvasive indicator of oocyte quality. In pigs, oocyte developmental competence is reduced during the summer months. The aim of this study was to determine whether the morphology of cumulus-oocyte complexes (COC) before and after IVM are associated with oocyte quality, using COC collected from small and large follicles in summer and winter as models of poor and good oocyte quality. Ovaries were collected from sows slaughtered 4 days after weaning. The COC recovered from small (3-4 mm) and large (5-8 mm) antral follicles were morphologically graded and parthenogenetically activated following IVM during winter (n = 1419; 10 replicates) and summer (n = 2803; 10 replicates). Grade 1 and 2 COC had >2 layers of compact cumulus cells and a homogenous cytoplasm. Grade 3 COC were either partially or fully denuded, had a heterogeneous cytoplasm, or were vacuolated or dark in color. Grade 4 COC had expanded cumulus cells. Cumulus expansion was also assessed subsequent to IVM. The COC recorded as having a cumulus expansion index (CEI) of 1 had the poorest expansion with no detectable response to IVM, whereas those with a CEI of 4 had the greatest amount of expansion, including that of the corona radiata. Data were analyzed using a generalized linear mixed model in GenStat® (release 10, VSN International, Hemel Hempstead, UK). There was an effect of follicle size for Grade 1 COC, with COC from large follicles in both seasons yielding better quality COC (P < 0.05). The proportion of COC in Grade 2 was higher in small follicles during winter compared with large follicles, but there were no differences between follicle sizes during summer (P < 0.05). The proportion of COC with CEI 1 was highest in COC from small follicles during summer (P < 0.05). The proportion of COC from large follicles with CEI 2 was higher during summer compared with winter (P < 0.05). There were no seasonal or follicle size effects on COC with CEI 3 or 4 (P > 0.05). The proportion of oocytes that developed to blastocysts was greater in winter than in summer (39.06% ± 5.67 v. 22.27% ± 4.01; P < 0.05). Oocytes derived from large follicles had a greater ability to form blastocysts compared with those from small follicles (37.13% ± 5.65 v. 23.32% ± 4.56; P < 0.06). Morphological assessment of cumulus cells before and after IVM may be a useful tool to evaluate the effects of follicle size on oocyte developmental competence. However, the results of the present study indicate that cumulus cell morphology is not a good indicator of the effect of season on oocyte developmental competence.


2014 ◽  
Vol 26 (1) ◽  
pp. 189 ◽  
Author(s):  
H. S. Pedersen ◽  
P. Løvendahl ◽  
N. K. Nikolaisen ◽  
P. Holm ◽  
P. Hyttel ◽  
...  

Oocytes from prepubertal (PRE) or postpubertal (POST) pigs are used in, for example, somatic cell nuclear transfer and in vitro fertilization. Here we describe mitochondrial dynamics in pig oocytes of different sizes before and after in vitro maturation (IVM), isolated from PRE or POST animals. In PRE oocytes, inside-zona pellucida diameter was measured before and after IVM (μm; small: ≤110, medium: >110, large: ≥120) and used for evaluation of (1) mitochondrial numbers before maturation and (2) mitochondrial morphology and location before and after maturation in comparison with POST oocytes. Oocytes were processed for transmission electron microscopy (Acta Anat. 129:12). For assessment of mitochondrial numbers, paired dissector sections were collected at uniform intervals throughout the oocyte, and in each set of dissector sections a known area fraction was sampled for mitochondrial counting in physical dissectors (J. Microsc. 134:127). Total number of mitochondria was calculated, and oocyte volume was estimated by Cavalieri estimator (J. Microsc. 147:229). Data were analysed by ANOVA. Mitochondrial morphology was classified as elongated, round, shell-like, or compartmentalized; mitochondrial cristae as transverse or peripheral; and mitochondrial location as cortical, subcortical, or central. Before IVM, small PRE presented elongated and round mitochondria with transverse cristae; medium and large PRE presented round mitochondria with peripheral and transverse cristae; POST presented round mitochondria with peripheral cristae in all cases. After IVM, small and medium PRE had round mitochondria with peripheral cristae; medium PRE and POST had shell-like mitochondria with peripheral cristae; large PRE had compartmentalized mitochondria with peripheral cristae. Before IVM, small PRE displayed cortical mitochondrial location, whereas the location in other groups was cortical and central. After IVM, mitochondria were located centrally in some large PRE and in all POST. Mitochondrial number increased during oocyte growth proportional to the increase in oocyte volume (Table 1). Shell-like and compartmentalized mitochondria indicate (1) dividing mitochondria (increasing mitochondrial numbers during maturation), or (2) apoptosis-related mitochondrial fission (compromised oocytes after maturation). After IVM, mitochondria seemed to reach the final central position most consistently in POST. These differences may partly explain the higher developmental competence in larger PRE and POST oocytes. Table 1.Mitochondrial number and oocyte volume in pre- and postpubertal pigs


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Piotr Celichowski ◽  
Mariusz J. Nawrocki ◽  
Marta Dyszkiewicz-Konwińska ◽  
Maurycy Jankowski ◽  
Joanna Budna ◽  
...  

The cumulus-oocyte complexes (COCs) growth and development during folliculogenesis and oogenesis are accompanied by changes involving synthesis and accumulation of large amount of RNA and proteins. In this study, the transcriptomic profile of genes involved in “oocytes RNA synthesis” in relation to in vitro maturation in pigs was investigated for the first time. The RNA was isolated from oocytes before and after in vitro maturation (IVM). Interactions between differentially expressed genes/proteins belonging to “positive regulation of RNA metabolic process” ontology group were investigated by STRING10 software. Using microarray assays, we found expression of 12258 porcine transcripts. Genes with fold change higher than 2 and with corrected p value lower than 0.05 were considered as differentially expressed. The ontology group “positive regulation of RNA metabolic process” involved differential expression of AR, INHBA, WWTR1, FOS, MEF2C, VEGFA, IKZF2, IHH, RORA, MAP3K1, NFAT5, SMARCA1, EGR1, EGR2, MITF, SMAD4, APP, and NR5A1 transcripts. Since all of the presented genes were downregulated after IVM, we suggested that they might be significantly involved in regulation of RNA synthesis before reaching oocyte MII stage. Higher expression of “RNA metabolic process” related genes before IVM indicated that they might be recognized as important markers and specific “transcriptomic fingerprint” of RNA template accumulation and storage for further porcine embryos growth and development.


2016 ◽  
Vol 95 (4) ◽  
pp. 76-76 ◽  
Author(s):  
A. Okamoto ◽  
M. Ikeda ◽  
A. Kaneko ◽  
C. Kishida ◽  
M. Shimada ◽  
...  

2018 ◽  
Vol 6 (4) ◽  
pp. 155-162 ◽  
Author(s):  
Sylwia Borys-Wójcik ◽  
Ievgenia Kocherova ◽  
Piotr Celichowski ◽  
Małgorzata Popis ◽  
Michal Jeseta ◽  
...  

AbstractA wide variety of mechanisms controlling oligomerization are observed. The dynamic nature of protein oligomerization is important for bioactivity control. The oocyte must undergo a series of changes to become a mature form before it can fully participate in the processes associated with its function as a female gamete. The growth of oocytes in the follicular environment is accompanied by surrounding somatic cumulus (CCs) and granulosa cells (GCs). It has been shown that oocytes tested before and after in vitro maturation (IVM) differ significantly in the transcriptomic and proteomic profiles. The aim of this study was to determine new proteomic markers for the oligomerization of porcine oocyte proteins that are associated with cell maturation competence. The Affymetrix microarray assay was performed to examine the gene expression profile associated with protein oligomerization in oocytes before and after IVM. In total, 12258 different transcriptomes were analyzed, of which 419 genes with lower expression in oocytes after IVM. We found 9 genes: GJA1, VCP, JUP, MIF, MAP3K1, INSR, ANGPTL4, EIF2AK3, DECR1, which were significantly down-regulated in oocytes after IVM (in vitro group) compared to oocytes analyzed before IVM (in vivo group). The higher expression of genes involved in the oligomerization of the protein before IVM indicates that they can be recognized as important markers of biological activation of proteins necessary for the further growth and development of pig embryos.


Sign in / Sign up

Export Citation Format

Share Document