scholarly journals Stability and Resistance of Steel Continuous Beams with Thin-Walled Box Sections

2018 ◽  
Vol 64 (4) ◽  
pp. 123-143 ◽  
Author(s):  
K. Brzezińska ◽  
A. Szychowski

AbstractThe issues of local stability and ultimate resistance of a continuous beam with thin-walled box section (Class 4) were reduced to the analysis of the local buckling of bilaterally elastically restrained internal plate of the compression flange at longitudinal stress variation. Critical stress of the local buckling was determined using the so-called Critical Plate Method (CPM). In the method, the effect of the elastic restraint of the component walls of the bar section and the effect of longitudinal stress variation that results from varying distribution of bending moments were taken into account. On that basis, appropriate effective characteristics of reliable sections were determined. Additionally, ultimate resistances of those sections were estimated. The impact of longitudinal stress variation and of the degree of elastic restraint of longitudinal edges on, respectively, the local buckling of compression flanges in the span section (p) and support section (s) was analysed. The influence of the span length of the continuous beam and of the relative plate slenderness of the compression flange on the critical ultimate resistance of box sections was examined.

2020 ◽  
Vol 10 (13) ◽  
pp. 4461 ◽  
Author(s):  
Andrzej Szychowski ◽  
Karolina Brzezińska

In modern steel construction, thin-walled elements with Class 4 cross-sections are commonly used. For the sake of the computation of such elements according to European Eurocode 3 (EC3), simplified computational models are applied. These models do not account for important parameters that affect the behavior of a structure susceptible to local stability loss. This study discussed the effect of local buckling on the design ultimate resistance of a continuous beam with a thin-walled Class 4 I-shaped cross-section. In the investigations, a more accurate computational model was employed. A new calculation model was proposed, based on the analysis of local buckling separately for the span segment and the support segment of the first span, which are characterized by different distributions of bending moments. Critical stress was determined using the critical plate method (CPM), taking into account the effect of the mutual elastic restraint of the cross-section walls. The stability analysis also accounted for the effect of longitudinal stress variation resulting from the varied distribution of bending moments along the continuous beam length. The results of the calculations were compared with the numerical simulations using the finite element method. The obtained results showed very good congruence. The phenomena mentioned above are not taken into consideration in the computational model provided in EC3. Based on the critical stress calculated as above, “local” critical moments were determined. These constitute a limit on the validity of the Vlasov theory of thin-walled bars. Design ultimate resistance of the I-shaped cross-section was determined from the plastic yield condition of the most compressed edge under the assumptions specified in the study. Detailed calculations were performed for I-sections welded from thin metal sheets, and for sections made from two cold-formed channels (2C). The impact of the following factors on the critical resistance and design ultimate resistance of the midspan and support cross-sections was analyzed: (1) longitudinal stress variation, (2) relative plate slenderness of the flange, and (3) span length of the continuous beam. The results were compared with the outcomes obtained for box sections with the same contour dimensions, and also with those produced acc. EC3. It was shown that compared with calculations acc. EC3, those performed in accordance with the CPM described much more accurately the behavior of the uniformly loaded continuous beam with a thin-walled section. This could lead to a more effective design of structures of this class.


2015 ◽  
Vol 61 (3) ◽  
pp. 149-168
Author(s):  
A. Szychowski

AbstractBuckling of the stiffened flange of a thin-walled member is reduced to the buckling analysis of the cantilever plate, elastically restrained against rotation, with the free edge stiffener, which is susceptible to deflection. Longitudinal stress variation is taken into account using a linear function and a 2nd degree parabola. Deflection functions for the plate and the stiffener, adopted in the study, made it possible to model boundary conditions and different buckling modes at the occurrence of longitudinal stress variation. Graphs of buckling coefficients are determined for different load distributions as a function of the elastic restraint coefficient and geometric details of the stiffener. Exemplary buckling modes are presented.


2016 ◽  
Vol 62 (2) ◽  
pp. 229-264 ◽  
Author(s):  
A. Szychowski

Abstract Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section res i stance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The “Critical Plate” (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. It was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model.


2015 ◽  
Vol 14 (2) ◽  
pp. 113-121 ◽  
Author(s):  
Andrzej Szychowski

The paper presents results of the investigation into the stability of elastically restrained cantilever walls (plates) with longitudinal and transverse stress variation. A linear distribution of stresses in the direction of the wall (plate) width and the linear or nonlinear (in accordance with parabola 20) distribution of stresses along the wall length were assumed. Plots of plate buckling coefficients (k) for variously supported and variously loaded cantilever plates, which are not found in the literature, were determined.


2015 ◽  
Vol 797 ◽  
pp. 137-144
Author(s):  
Beata Potrzeszcz-Sut ◽  
Andrzej Szychowski

There are situations in the thin-walled steel girders with box intersection, in which the internal wall of compression flange is elastically restrained in the webs of section and along its length occurs the change of normal stresses. Such a wall was modelled, as a bilateral elastically restrained internal plate variably loaded at the length. Explicit formulation of neural formula on buckling coefficient of internal plate at non-linear distribution of longitudinal stress was discussed in this paper. A few structures of neural networks (NN) were envisaged in order to obtain the best of the numerical effectiveness of the final formula. The results noted from the literature were used for the evaluation of neural prediction of coefficient.


Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Mabao Liu ◽  
Rui Xue ◽  
Lin’an Li

Because of the advantages of light weight, small size, and good maneuverability, the bio-inspired micro aerial vehicle has a wide range of application prospects and development potential in military and civil areas, and has become one of the research hotspots in the future aviation field. The beetle’s elytra possess high strength and provide the protection of the abdomen while being functional to guarantee its flight performance. In this study, the internal microstructure of beetle’s elytra was observed by scanning electron microscope (SEM), and a variety of bionic thin-walled structures were proposed and modelled. The energy absorption characteristics and protective performance of different configurations of thin-walled structures with hollow columns under impact loading was analyzed by finite element method. The parameter study was carried out to show the influence of the velocity of impactor, the impact angle of the impactor and the wall thickness of honeycomb structure. This study provides an important inspiration for the design of the protective structure of the micro aerial vehicle.


2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1422
Author(s):  
Youssef Boutahar ◽  
Nadhir Lebaal ◽  
David Bassir

A refined beam theory that takes the thickness-stretching into account is presented in this study for the bending vibratory behavior analysis of thick functionally graded (FG) beams. In this theory, the number of unknowns is reduced to four instead of five in the other approaches. Transverse displacement is expressed through a hyperbolic function and subdivided into bending, shear, and thickness-stretching components. The number of unknowns is reduced, which involves a decrease in the number of the governing equation. The boundary conditions at the top and bottom FG beam faces are satisfied without any shear correction factor. According to a distribution law, effective characteristics of FG beam material change continuously in the thickness direction depending on the constituent’s volume proportion. Equations of motion are obtained from Hamilton’s principle and are solved by assuming the Navier’s solution type, for the case of a supported FG beam that is transversely loaded. The numerical results obtained are exposed and analyzed in detail to verify the validity of the current theory and prove the influence of the material composition, geometry, and shear deformation on the vibratory responses of FG beams, showing the impact of normal deformation on these responses which is neglected in most of the beam theories. The obtained results are compared with those predicted by other beam theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of FG beams.


2017 ◽  
Vol 63 (1) ◽  
pp. 163-180 ◽  
Author(s):  
H.B. Wen ◽  
T. Zeng ◽  
G.Z. Hu

AbstractLaplace Transform is often used in solving the free vibration problems of structural beams. In existing research, there are two types of simplified models of continuous beam placement. The first is to regard the continuous beam as a single-span beam, the middle bearing of which is replaced by the bearing reaction force; the second is to divide the continuous beam into several simply supported beams, with the bending moment of the continuous beam at the middle bearing considered as the external force. Research shows that the second simplified model is incorrect, and the frequency equation derived from the first simplified model contains multiple expressions which might not be equivalent to each other. This paper specifies the application method of Laplace Transform in solving the free vibration problems of continuous beams, having great significance in the proper use of the transform method.


2017 ◽  
Vol 865 ◽  
pp. 612-618 ◽  
Author(s):  
M. Malawat ◽  
Jos Istiyanto ◽  
D.A. Sumarsono

Crush initiators are the weakest points to reduce initial peak load force with significant energy absorption ability. The objective of this paper is to study the effects of square tube thickness and crush initiators position for impact energy absorber (IEA) performance on thin-walled square tubes. Two square tubes having thickness about 0.6 mm (specimen code A) and 1 mm (specimen Code C) were tested under dynamic load. The crushing initiator is designed around the shape of the tube wall and has eight holes with a fixed diameter of 6.5 mm. In the experiment, the crushing initiator was determined at 5 different locations on the specimen wall. These locations are 10 mm, 20 mm. 30 mm, 40 mm, and 50 mm measured from the initial collision position of the specimen tested. The impact load mass was about 80 kg and had a drop height of about 1.5 m. Using the simulation program of the LabVIEW Professional Development System 2011 and National Instrument (NI) 9234 software equipped with data acquisition hardware NI cDAQ-9174 the signal from the load cell was sent to a computer. By controlling the thickness of the thin-walled square tube, the peak loading force can be decreased by approximately 56.75% and energy absorption ability of IEA can be increased approximately to 11.83%. By using different thin-walled square tube can produce different best crush initiators position with the lowest peak load force.


Sign in / Sign up

Export Citation Format

Share Document