scholarly journals Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent

2016 ◽  
Vol 42 (2) ◽  
pp. 33-43 ◽  
Author(s):  
Masoud Moradi ◽  
Mehdi Fazlzadehdavil ◽  
Meghdad Pirsaheb ◽  
Yadollah Mansouri ◽  
Touba Khosravi ◽  
...  

Abstract This research was conducted to study the adsorption of ammonium ions onto pumice as a natural and low-cost adsorbent. The physico-chemical properties of the pumice granular were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Modeling and optimization of a NH4+ sorption process was accomplished by varying four independent parameters (pumice dosage, initial ammonium ion concentration, mixing rate and contact time) using a central composite design (CCD) under response surface methodology (RSM). The optimum conditions for maximum removal of NH4+ (70.3%) were found to be 100 g, 20 mg/l, 300 rpm and 180 min, for pumice dosage, initial NH4+ ion concentration, mixing rate and contact time. It was found that the NH4+ adsorption on the pumice granular was dependent on adsorbent dosage and initial ammonium ion concentration. NH4+ was increased due to decrease the initial concentration of NH4 and increase the contact time, mixing rate and amount of adsorbent.

2021 ◽  
Vol 12 (4) ◽  
pp. 4567-4583

Tunics corm saffron (TCS) is a low-cost adsorbent that removes methylene blue (MB) from an aqueous solution. The TCS was characterized using FTIR and SEM analysis. The influence of MB adsorption variables such as TCS dose (0.4–2.4 g L−1), contact time (0–120 min), MB dye concentration (100–500 mg L−1) was optimized Box–Behnken design (BBD) combined with response surface methodology (RSM) modeling. All three variables among the main parameters significantly affected the removal efficiency by applying the quadratic regression analysis. The results showed that the predicted values for MB adsorption were close to the experimental values and were in good agreement. Besides, the r2 value (r2=0.970) indicates that the regression can predict response for the adsorption process in the studied range. The optimum BBD-RSM for MB removal of 89.48 % was recorded at a TCS dose of 1.78 g L−1, contact time of 56 min, MB dye concentration of 176 mg L–1 at solution pH of 5.4 temperature 21 °C. Excellent regeneration of TCS to remove MB in sixth consecutive adsorption-desorption cycles. This work highlights that TCS offers tremendous potential as a low-cost for organic dyes removal from wastewaters.


2019 ◽  
Vol 25 ◽  
pp. 1-11 ◽  
Author(s):  
Abiodun Paul Olalekan ◽  
Bamidele Sunday Fakinle ◽  
Adewunmi Oluwasogo Dada ◽  
Oghenerobo Benjamin Akpor ◽  
Oluwasola Oribayo

In this study, the Pb(II) ions adsorption unto nanoscale zerovalent iron particles (nZVI) supported on rice husk has been carried out. The challenge of nanoparticles agglomeration makes immobilising them on rice husk desirable. Optimization of process parameters, pH (4 – 10), adsorbent dose (0.5 – 2.0 g) and contact time (60 – 300 min), was carried out using response surface methodology (RSM) based on Box-Behnken design. Optimum condition for maximum Pb(II) ions of 98.74% was predicted at contact time of 60.12 min, pH of 4.01 and adsorbent dose of 0.5 g. At these optimized conditions, 97.23% removal was achieved experimentally. Analysis of variance carried out on the experimental data showed that the model was significant with a R2 of 0.9883. The synthesised adsorbent was characterized with Fourier transform-infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The SEM showed that RH-nZVI has a very porous surface structure. Amine, carboxyl and hydroxyl groups were some of the identified functional groups present in the adsorbent for adsorption. This study suggests that nZVI supported on rice husk is a viable low-cost adsorbent for removing Pb(II) ions from wastewater.


2017 ◽  
Vol 43 (2) ◽  
pp. 37-43 ◽  
Author(s):  
Yusuf Uzun ◽  
Tekin Şahan

Abstract Removal of mercury(II) (Hg(II)) from aqueous media by a new biosorbent was carried out. Natural Polyporus squamosus fungus, which according to the literature has not been used for the purpose of Hg(II) biosorption before, was utilized as a low-cost biosorbent, and the biosorption conditions were analyzed by response surface methodology (RSM). Medium parameters which were expected to affect the biosorption of Hg(II) were determined to be initial pH, initial Hg(II) concentration (Co), temperature (T (°C)), and contact time (min). All experiments were carried out in a batch system using 250 mL fl asks containing 100 mL solution with a magnetic stirrer. The Hg(II) concentrations remaining in fi ltration solutions after biosorption were analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Based on the RSM results, the optimal conditions were found to be 5.30, 47.39 mg/L, 20°C and 254.9 min for pH, Co, T (°C), and contact time, respectively. Under these optimal conditions, the maximum biosorbed amount and the biosorption yield were calculated to be 3.54 mg/g and 35.37%, respectively. This result was confi rmed by experiments. This result shows that Polyporus squamosus has a specifi c affi nity for Hg ions. Under optimal conditions, by increasing the amount of Polyporus squamosus used, it can be concluded that all Hg ions will be removed


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4430
Author(s):  
Nor Hakimin Abdullah ◽  
Mazlan Mohamed ◽  
Norshahidatul Akmar Mohd Shohaimi ◽  
Azwan Mat Lazim ◽  
Ahmad Zamani Abdul Halim ◽  
...  

The presence of organic dyes from industrial wastewater can cause pollution and exacerbate environmental problems; therefore, in the present work, activated carbon was synthesized from locally available oil palm trunk (OPT) biomass as a low-cost adsorbent to remove synthetic dye from aqueous media. The physical properties of the synthesized oil palm trunk activated carbon (OPTAC) were analyzed by SEM, FTIR-ATR, and XRD. The concurrent effects of the process variables (adsorbent dosage (g), methylene blue (MB) concentration (mg/L), and contact time (h)) on the MB removal percentage from aqueous solution were studied using a three-factor three-level Box–Behnken design (BBD) of response surface methodology (RSM), followed by the optimization of MB adsorption using OPTAC as the adsorbent. Based on the results of the analysis of variance (ANOVA) for the three parameters considered, adsorbent dosage (X1) is the most crucial parameter, with an F-value of 1857.43, followed by MB concentration (X2) and contact time (X3) with the F-values of 95.60 and 29.48, respectively. Furthermore, the highest MB removal efficiency of 97.9% was achieved at the optimum X1, X2, and X3 of 1.5 g, 200 mg/L, and 2 h, respectively.


2019 ◽  
Vol 41 (1) ◽  
pp. 78-78
Author(s):  
Ainy Hafeez Ainy Hafeez ◽  
Syed Mohsin Ali Kazmi Syed Mohsin Ali Kazmi ◽  
Muhammad Sulaiman Muhammad Sulaiman ◽  
Chaudhry Haider Ali and Nadeem Feroze Chaudhry Haider Ali and Nadeem Feroze

The current study investigates the role of Phoenix Dactylifera L. (date palm) seeds as an effective biosorbent for removing Zn+2, a toxic heavy metal pollutant usually found in the waste streams of industries like fertilizer, mining and galvanizing etc. Date palm seeds were washed, dried, crushed in 170-300 um and modified by acidic treatment (0.1 MHNO3). The effect of most important parameters i.e., pH (3.5-6.1), initial zinc ion concentration (5-100mg/l), biosorbent dosage (0.1-1g) and contact time (0.5-60sec) have been studied via design expert software (version 8.0.6) of response surface methodology. The Box-Bhenken Design (BBD) was used in Response Surface Methodology (RSM) for designing the experiments and a number of 29 experiments were run. The model suggested by the design expert software was quadratic as it had maximum R2- value (0.9235) which indicated that the predicted values of quadratic model were best fitted to the experimental values. The significance of the factors was indicated by Analysis of Variance (ANOVA). The results showed that the metal uptake increased by increasing initial zinc concentration and decreasing in biosorbent dosage and pH while the contact time had negligible effect on the response surface. The parameters were numerically optimized and the optimum input parameters obtained were pH = 3.52, initial zinc ion concentration = 59.11ppm, biosorbent dosage = 0.1g and contact time = 60min with a metal uptake of 26.84mg/g. Therefore, (Phoenix Dactylifera L.) seeds substantially removed zinc ions under optimum conditions.


2020 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Amin Mojiri ◽  
Maedeh Baharlooeian ◽  
Reza Andasht Kazeroon ◽  
Hossein Farraji ◽  
Ziyang Lou

Using microalgae to remove pharmaceuticals and personal care products (PPCPs) micropollutants (MPs) have attracted considerable interest. However, high concentrations of persistent PPCPs can reduce the performance of microalgae in remediating PPCPs. Three persistent PPCPs, namely, carbamazepine (CBZ), sulfamethazine (SMT) and tramadol (TRA), were treated with a combination of Chaetoceros muelleri and biochar in a photobioreactor during this study. Two reactors were run. The first reactor comprised Chaetoceros muelleri, as the control, and the second reactor comprised Chaetoceros muelleri and biochar. The second reactor showed a better performance in removing PPCPs. Through the response surface methodology, 68.9% (0.330 mg L−1) of CBZ, 64.8% (0.311 mg L−1) of SMT and 69.3% (0.332 mg L−1) of TRA were removed at the initial concentrations of MPs (0.48 mg L−1) and contact time of 8.1 days. An artificial neural network was used in optimising elimination efficiency for each MP. The rational mean squared errors and high R2 values showed that the removal of PPCPs was optimised. Moreover, the effects of PPCPs concentration (0–100 mg L−1) on Chaetoceros muelleri were studied. Low PPCP concentrations (<40 mg L−1) increased the amounts of chlorophyll and proteins in the microalgae. However, cell viability, chlorophyll and protein contents dramatically decreased with increasing PPCPs concentrations (>40 mg L−1).


2017 ◽  
Vol 76 (4) ◽  
pp. 776-784 ◽  
Author(s):  
Mijia Zhu ◽  
Jun Yao ◽  
Zhonghai Qin ◽  
Luning Lian ◽  
Chi Zhang

Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.


Sign in / Sign up

Export Citation Format

Share Document