scholarly journals Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory

2015 ◽  
Vol 25 (3) ◽  
pp. 561-576 ◽  
Author(s):  
Abdel-Razzak Merheb ◽  
Hassan Noura ◽  
François Bateman

Abstract In this paper, sliding mode control is used to develop two passive fault tolerant controllers for an AscTec Pelican UAV quadrotor. In the first approach, a regular sliding mode controller (SMC) augmented with an integrator uses the robustness property of variable structure control to tolerate partial actuator faults. The second approach is a cascaded sliding mode controller with an inner and outer SMC loops. In this configuration, faults are tolerated in the fast inner loop controlling the velocity system. Tuning the controllers to find the optimal values of the sliding mode controller gains is made using the ecological systems algorithm (ESA), a biologically inspired stochastic search algorithm based on the natural equilibrium of animal species. The controllers are tested using SIMULINK in the presence of two different types of actuator faults, partial loss of motor power affecting all the motors at once, and partial loss of motor speed. Results of the quadrotor following a continuous path demonstrated the effectiveness of the controllers, which are able to tolerate a significant number of actuator faults despite the lack of hardware redundancy in the quadrotor system. Tuning the controller using a faulty system improves further its ability to afford more severe faults. Simulation results show that passive schemes reserve their important role in fault tolerant control and are complementary to active techniques

2009 ◽  
Vol 23 (16) ◽  
pp. 2021-2034 ◽  
Author(s):  
XINGYUAN WANG ◽  
DA LIN ◽  
ZHANJIE WANG

In this paper, control of the uncertain multi-scroll critical chaotic system is studied. According to variable structure control theory, we design the sliding mode controller of the uncertain multi-scroll critical chaotic system, which contains sector nonlinearity and dead zone inputs. For an arbitrarily given equilibrium point of the uncertain multi-scroll chaotic system, we achieve global stabilization for the equilibrium points. Particularly, a class of proportional integral (PI) switching surface is introduced for determining the convergence rate. Furthermore, the proposed control scheme can be extended to complex multi-scroll networks. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 282 ◽  
Author(s):  
Cong-Trang Nguyen ◽  
Thanh Long Duong ◽  
Minh Quan Duong ◽  
Duc Tung Le

Variable structure control with sliding mode can provide good control performance and excellent robustness. Unfortunately, the chattering phenomenon investigated due to discontinuous switching gain restricting their applications. In this paper, a chattering free improved variable structure control (IVSC) for a class of mismatched uncertain interconnected systems with an unknown time-varying delay is proposed. A sliding function is first established to eliminate the reaching phase in traditional variable structure control (TVSC). Next, a new reduced-order sliding mode estimator (ROSME) without time-varying delay is constructed to estimate all unmeasurable state variables of plants. Then, based on the Moore-Penrose inverse approach, a decentralized single-phase robustness sliding mode controller (DSPRSMC) is synthesized, which is independent of time delays. A DSPRSMC solves a complex interconnection problem with an unknown time-varying delay term and drives the system’s trajectories onto a switching surface from the initial time instance. Particularly, by applying the well-known Barbalat’s lemma, the chattering phenomenon in control input is alleviated. Moreover, a sufficient condition is established by using an appropriate Lyapunov theory and linear matrix inequality (LMI) method such that a sliding mode dynamics is asymptotically stable from the beginning time. Finally, a developed method is validated by numerical example with computer simulations.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hao Sheng ◽  
Xia Liu

This paper studies the problems of external disturbance and various actuator faults in a nonlinear robotic system. A composite compensation control scheme consisting of adaptive sliding mode controller and observer-based fault-tolerant controller is proposed. First, a sliding mode controller is designed to suppress the external disturbance, and an adaptive law is employed to estimate the bound of the disturbance. Next, a nonlinear observer is designed to estimate the actuator faults, and a fault-tolerant controller is obtained based on the observer. Finally, the composite compensation control scheme is obtained to simultaneously compensate the external disturbance and various actuator faults. It is proved by Lyapunov function that the disturbance compensation error and fault compensation error can converge to zero in finite time. The theoretical results are verified by simulations. Compared to the conventional fault reconstruction scheme, the proposed control scheme can compensate the disturbance while dealing with various actuator faults. The fault compensation accuracy is higher, and the fault error convergence rate is faster. Moreover, the robot can track the desired position trajectory more accurately and quickly.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jing He ◽  
Lin Mi ◽  
Songan Mao ◽  
Changfan Zhang ◽  
Houguang Chu

This paper presents a fault-tolerant control scheme for a class of nonlinear systems with actuator faults and unknown input disturbances. First, the sliding mode control law is designed based on the reaching law method. Then, in view of unpredictable state variables and unknown information in the control law, the original system is transformed into two subsystems through a coordinate transformation. One subsystem only has actuator faults, and the other subsystem has both actuator faults and disturbances. A sliding mode observer is designed for the two subsystems, respectively, and the equivalence principle of the sliding mode variable structure is used to realize the accurate reconstruction of the actuator faults and disturbances. Finally, the observation value and the reconstruction value are used to carry out an online adjustment to the designed sliding mode control law, and fault-tolerant control of the system is realized. The simulation results are presented to demonstrate the approach.


2014 ◽  
Vol 536-537 ◽  
pp. 1087-1092
Author(s):  
Yue Yue Lv ◽  
Wei Huang ◽  
Juan Liu ◽  
Zheng Fu Peng

In this paper, quaternionbased mathematical model of Quadrotor without singularity is established to avoid Gimbal Lock problem in Euler angles. Flight control algorithm based on sliding mode variable structure control (SMVSC) is introduced to control the attitude and position to approach the challenge of underactuation, nonlinearity and strong coupling. Numerical simulation is conducted to prove the effectiveness of the proposed method.


Compared with other control methods, the biggest advantage of using sliding mode variable structure control method lies in its strong robustness which could be used to directly handle the strong nonlinear flight control system. However, this control method requires switching between different switching surfaces, which will inevitably cause buffeting problems, so that the energy consumption increases. Therefore, how to overcome this disadvantage to achieve the superior performance of sliding mode variable structure control method is the current research focus. This paper studies the trajectory tracking of under-actuated VTOL aircraft with three degrees of freedom and two control inputs under various coupling effects. By the input and coordinate transformation, the dynamic equation of the system is transformed into decoupled standard under-actuated form and the sliding mode controller is designed. Then Lyapunov stability theorem is used to derive sliding mode control law which could ensure that the system asymptotically converges to the given trajectory. The simulation has demonstrated the effectiveness of this method


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1487
Author(s):  
Xiaoli Zhang ◽  
Zhengyu Zhu ◽  
Yang Yi

In this paper, a novel control algorithm with the capacity of fault tolerance and anti-disturbance is discussed for the systems subjected to actuator faults and mismatched disturbances. The fault diagnosis observer (FDO) and the disturbance observer (DO) are successively designed to estimate the dynamics of unknown faults and disturbances. Furthermore, with the help of the observed information, a sliding surface and the corresponding sliding mode controller are proposed to compensate the actuator faults and eliminate the impact of mismatched disturbances simultaneously. Meanwhile, the convex optimization algorithm is discussed to guarantee the stability of the controlled system. The favorable anti-disturbance and fault-tolerant results can also be proved. Finally, the validity of the algorithm is certified by the simulation results for typical unmanned aerial vehicles (UAV) systems.


Author(s):  
Pooria Beydaghi ◽  
Moosa Ayati ◽  
Mohammad Reza Zakerzadeh

This paper focuses on developing a Fault-tolerant control (FTC) method for a rotary Shape Memory Alloy (SMA) actuator against actuator faults. The SMA actuator uses a pair of SMA wires in the antagonistic configuration for rotating a pulley. A proposed Terminal Sliding Mode Controller (TSMC) is utilized to compensate for the effects of actuator faults and to guarantee acceptable tracking performance in the presence of faults. The developed closed-loop scheme is applied to both a simulated model of the actuator as well as a real actuator in an experimental setup and then, the performance is evaluated and compared with a Proportional (P) controller and a sliding mode controller. It is shown that the proposed scheme works well in both normal and faulty conditions. The experimental results indicate that TSMC has almost no steady-state error while both P and sliding mode controllers have a considerable error (about 20% relative error), in the presence of the actuator faults.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Jie Wang ◽  
Qun Zong ◽  
Xiao He ◽  
Hamid Reza Karimi

The problem of robust fault-tolerant tracking control is investigated. Simulation on the longitudinal model of a flexible air-breathing hypersonic vehicle (FAHV) with actuator faults and uncertainties is conducted. In order to guarantee that the velocity and altitude track their desired commands in finite time with the partial loss of actuator effectiveness, an adaptive fault-tolerant control strategy is presented based on practical finite-time sliding mode method. The adaptive update laws are used to estimate the upper bound of uncertainties and the minimum value of actuator efficiency factor. Finally, simulation results show that the proposed control strategy is effective in rejecting uncertainties even in the presence of actuator faults.


Sign in / Sign up

Export Citation Format

Share Document