scholarly journals Effect Of Turbulence Modelling In Numerical Analysis Of Melting Process In An Induction Furnace

2015 ◽  
Vol 60 (3) ◽  
pp. 1575-1580 ◽  
Author(s):  
P. Buliński ◽  
J. Smołka ◽  
S. Golak ◽  
R. Przyłucki ◽  
L. Blacha ◽  
...  

AbstractIn this paper, the velocity field and turbulence effects that occur inside a crucible of a typical induction furnace were investigated. In the first part of this work, a free surface shape of the liquid metal was measured in a ceramic crucible. Then a numerical model of aluminium melting process was developed. It took into account coupling of electromagnetic and thermofluid fields that was performed using commercial codes. In the next step, the sensitivity analysis of turbulence modelling in the liquid domain was performed. The obtained numerical results were compared with the measurement data. The performed analysis can be treated as a preliminary approach for more complex mathematical modelling for the melting process optimisation in crucible induction furnaces of different types.

2014 ◽  
Vol 698 ◽  
pp. 237-244
Author(s):  
Sergejs Spitans ◽  
Egbert Baake ◽  
Andris Jakovics

In this paper a new drip-and leakage-free method for the electromagnetic levitation melting of metallic samples with greater weights, stabilized position and free surface shape is presented. The method can be used in a melting furnace, as well as for the coreless induction valves applied for the flow rate control, e.g. in the continuous casting of molten metals.The applicability of the method was examined numerically and experimentally proved by tests conducted with different types of laboratory setups.


2021 ◽  
Vol 263 (3) ◽  
pp. 3436-3447
Author(s):  
Dan Lin ◽  
Andrew Eng

Assumptions made on the ground types between sound sources and receivers can significantly impact the accuracy of environmental outdoor noise prediction. A guideline is provided in ISO 9613-2 and the value of ground factor ranges from 0 to 1, depending on the coverage of porous ground. For example, a ground absorption factor of 1 is suggested for grass ground covers. However, it is unclear if the suggested values are validated. The purpose of this study is to determine the sound absorption of different types of ground by measurements. Field noise measurements were made using an omnidirectional loudspeaker and two microphones on three different types of ground in a quiet neighborhood. One microphone was located 3ft from the loudspeaker to record near field sound levels in 1/3 and 1 octave bands every second. The other microphone was located a few hundred feet away to record far field sound in the same fashion as the near field microphone. The types of ground tested were concrete, grass, and grass with trees. Based on the measurement data, it was found that grass and trees absorb high frequency sound well and a ground factor of 1 may be used for 500Hz and up when using ISO 9613-2 methodology. However, at lower frequencies (125 Hz octave band and below), grassy ground reflects sound the same as concrete surfaces. Trees absorb more low frequency sound than grass, but less than ISO 9613-2 suggested.


2020 ◽  
Vol 991 ◽  
pp. 37-43
Author(s):  
Agus Yulianto ◽  
Rudy Soenoko ◽  
Wahyono Suprapto ◽  
As’ad Sonief ◽  
Agung Setyo Darmawan ◽  
...  

Molds of metal are widely used in the casting process. The cooling rate in solidification of castings product with metal molds on the outer side and inner side is different. Therefore, sizes and types of phase will be also different. This study aims to investigate the microstructure andhardness of gray cast iron. To realize this research, the gray cast iron melting process was carried out in an induction furnace. Melted gray cast iron was poured into a Ferro Casting Ductile mold that has been through a preheating process at a temperature of 300 o C. The gray cast iron is then tested for composition, microstructure and hardness. The test results show that the part containing morecementite phase will be harder.


2012 ◽  
Vol 557-559 ◽  
pp. 2257-2260
Author(s):  
Yan Juan Jin ◽  
Xiao Chao Cui ◽  
Yan Xia Chen

In the paper, flow status and solidification status of molten steel in inner-outer couple cooling mold in the filling process are simulated by using fluid dynamics software Flow-3d, and obtain distributing diagrams of flow field and temperature field and free-surface shape diagrams in the filling process. Influences of flow field and temperature field of filling process on solidification are analyzed in the slab continuous casting. It is indicated that inner cooler can improve molten steel flow status, which is favorable to inclusion in molten steel floating up, quicken the solidification rate of molten steel in the mold.


Author(s):  
Y. L. Hao ◽  
Y.-X. Tao

A series of experiments are conducted to investigate the characteristics and its effect on the melting and heat of a packed bed consisting of melting ice particles to horizontal forced convection. The volumes and situations of the melting ganular packed beds are by the visualization observations and measurements digital camcorders within the range of Re = 71 ~ 2291, Gr/Re2 = 1.48×10−5 ~ 17.32, and Ste = 0.0444 ~ 0.385, respectively. The mass of ice particles is measured at the time interval during the melting process. Two types of pattern can be found under the different conditions. The different types of heat transfer characteristics emerge in type of packing pattern. The correlations for each type of pattern are obtained based on the experimental results.


Author(s):  
Jie Ren ◽  
Hui Wang

Controlling surface shape variations plays a key role in high-precision manufacturing. Most manufacturing plants rely on a number of multi-resolution measurements on manufactured surfaces to evaluate surface shapes and resultant quality. Conventional research on surface shape modeling focused on interpolation and extrapolation of spatial data using sampled measurements based on presumed spatial relationship over entire surface locations. However, the prediction accuracy is heavily restricted by the density of sampled measurements, preventing cost-effective evaluation of surface shape in high precision. New opportunities emerge for cost-effective high-precision surface manufacturing when the industry begins to extensively collect in-plant process information. This paper explores the opportunity by investigating strategies for fusing surface measurement data with multiple process variables. The fusion is achieved by characterizing the relationships between surface height and process variables using (1) linear regression based co-Kriging and (2) fuzzy if-then rules as well as considering spatial correlations. Under (3) Bayesian sequential updating frameworks, a generic surface variation model is updated sequentially using different process information. Case studies are conducted for comparisons and demonstrate the advantages of the fuzzy inference based spatial model.


Sign in / Sign up

Export Citation Format

Share Document