scholarly journals The Structural and Strength Changes Resulting from Modification of Heat Treatment of High Carbon Steel

2016 ◽  
Vol 61 (2) ◽  
pp. 971-976 ◽  
Author(s):  
D. Grygier ◽  
M. Rutkowska-Gorczyca ◽  
R. Jasiński ◽  
W. Dudziński

Abstract Pearlitic steels containing from some 0,8 to 0,95% C belong to the group of unalloyed steels intended for cold drawing or rolling. One of the problems discussed in literature is cracking of pearlitic steel subjected to plastic working, caused by high brittleness of the lamellar precipitations of hard cementite. This issue is extremely important because it affects significantly reduce fatigue strength. The paper presents proposals to modify the process of heat treatment, results in getting a steel with spheroidal structure characterized by better plastic properties, in order to eliminate this problem.

2021 ◽  
Vol 1 (1) ◽  
pp. 51
Author(s):  
Alfan Ekajati Latief ◽  
Syahril Sayuti ◽  
Rakean Wide Windujati

 ABSTRAKTanto merupakan senjata tajam yang berasal dari Jepang dan merupakan senjata kedua bagi para Samurai di Jepang. Tanto biasa terbuat dari baja karbon menengah hingga baja karbon tinggi yang. Material baja yang digunakan untuk pembuatan Tanto dalam penelitian ini adalah baja AISI seri O1 karena memiliki karakteristik sifat mampu bentuk yang baik serat dapat dikuatkan melalui proses heat treatment. Material baja ini dibuat dengan proses tempa lipat  dengan variasi tempa empat lipatan dan satu lipatan. Pembuatan Tanto dan spesimen uji dilakukan dengan proses tempa lipat secara konvensional menggunakan tungku arang, dengan temperatur tempa rata-rata yaitu ±1200oC, kemudian dilanjutkan dengan quenching pada temperatur ± 850oC, serta tempering pada temperatur ±250oC. Penelitian ditujukan untuk mengetahui pengaruh dari proses tempa empat lipatan dan tempa satu lipatan terhadap sifat mekanik, yaitu kekerasan dan kekuatan impak serta untuk melihat perubahan pada struktur mikro. Hasil pengujian menunjukkan bahwa nilai kekerasan paling tinggi sebesar41HRC yang dimiliki oleh pada raw material, ,sedangkan nilai impak paling tinggi sebesar 224,02 Joule/cm² ayng dicapai oleh material dengan proses tempa empat lipatan, Fasa akhir yang ditemukan pada baja tempa empat lipatan adalah  bainit dan martensit, sementara  perlit dan ferit ditemukan  pada baja satu lipatan, dan lath martensit ditemukan pada pada raw material  Kata kunci: Pisau Tanto, Tempa lipat ,Quenching, Tempering, Uji Impak  ABSTRACT Tanto is a sharp weapon originating  from Japan and is the second weapon for Samurai in Japan. Tanto is usually made of medium carbon steel to high carbon steel. The material which is used in this research is AISI O1 series steel because of its high ability to be formed and also can be made tough through a heat treatment process. This steel is made by folding forge process, with variation in number of folding, which is 4 folds and 1 fold. The making of Tanto and test specimens was carried out by conventional fold forging processes by using a charcoal furnace, with an average forging temperature at ± 1200oC, continue with quenching at ± 850oC, and tempering at ± 250oC. The research is carried out in order to determine the effect of the four-folds forging and one-fold forging to the mechanical behavior, which are hardness and impact strength,  and also to see change in its micro structure. The test that have been carried out shows that the highest hardness value of 41 HRC owned by raw material, while the highest impact value of 224.02 Joules / cm² obtained by material with four layer forging process. Final phases that found in the four-fold forged steel are bainite and martensite, pearlite and ferrite found in one-fold forged steel. and lath martensite in found in the raw material. Keywords: Tanto Knife, Folding Forging, Quenching, Tempering, Testing, Impact Tests


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4136
Author(s):  
Jing Wang ◽  
Yongfeng Shen ◽  
Yan Liu ◽  
Fuguo Wang ◽  
Nan Jia

SEM, TEM characterizations, in combination with tensile tests, provided an intriguing observation that ultra-high-strength and good ductility could be achieved simultaneously by changing the ratio of large and small precipitates in high-carbon steel (1.0C-1.5Cr-0.31Mn-0.20Si, wt %). The high yield strength of 670 MPa, tensile-stress of 740 MPa, and good ductility (elongation of 26%) were obtained by adopting spheroidization annealing, cold rolling, recrystallization annealing, and cold drawing. This led to nanosized precipitates with a large ratio of big size to the small size of 0.28, promoting high dislocation storage of 1.39 × 1014 m−2. In addition, the finite element (FE) method was used to simulate the cold-rolling process, and the largest stress and strain were 830 MPa and 0.6 at a depth of 3 mm after the fourth pass of the 0.10C-1.50Cr steel, respectively. The stress and strain accumulation in the top layer was potentially caused by severe plastic deformation, as well as attrition rendered by the rollers. This explained the emergence of dense low-angle grain boundaries in the region close to the surface of the cold rolled steel.


2005 ◽  
Vol 475-479 ◽  
pp. 4157-4160 ◽  
Author(s):  
Kee Do Woo ◽  
S.W. Kim ◽  
Dong Ki Kim

It is convenient to analyze the distribution of boron in high carbon steel with boron, simply using neutron-induced radiography with a neutron fluency of 1.9 x 1013 [cm-2]. It was revealed by the neutron-induced radiography that the distribution of boron was dependent on boron contents, graphitizing temperature and time. The density of boron track increased with increasing boron contents. But the density of the boron track and graphite in high carbon steel graphitized at 700°C is higher than that of high carbon steel graphitized at 750°C. The density of graphite in high carbon steel also depends upon the content of boron and the graphitizing temperature. The shape of the boron track was changed from sphere to rod type when annealed at 800°C, in steel containing 50ppm of boron, due to different phases of boride. The distribution of boron segregation or boronrich precipitates in high carbon steel was well documented with a neutron-induced radiography, but the direct relationship between graphite and boron was not clarified by it. Furthermore, the analysis of electron probe X-ray microanalyzer (EPMA) also showed that the high amount of boron coexisted with carbon in graphite in high carbon steel.


2007 ◽  
Vol 49 (3-4) ◽  
pp. 167-171 ◽  
Author(s):  
N. Frage ◽  
L. M. Kaputkina ◽  
V. G. Prokoshkina ◽  
D. E. Kaputkin ◽  
N. R. Sverdlova

2015 ◽  
Vol 55 (1) ◽  
pp. 272-277 ◽  
Author(s):  
Yasuhiro Morizono ◽  
Takuya Yamaguchi ◽  
Sadahiro Tsurekawa

2015 ◽  
Vol 60 (2) ◽  
pp. 855-858 ◽  
Author(s):  
S. Wiewiórowska ◽  
Z. Muskalski

Abstract One of the most important types of heat treatment that high-carbon steel wires are subjected to is the patenting treatment. This process is conducted with the aim of obtaining a fine-grained uniform pearlitic structure which will be susceptible to plastic deformation in drawing processes. Patenting involves two-stage heat treatment that includes heating the wire up to the temperature above Ac3 in a continuous heating furnace (in the temperature range of 850÷1050°C) followed by a rapid cooling in a tank with a lead bath down to the temperature range of 450÷550°C. The patenting process is most significantly influenced by the chemistry of the steel being treated, as well as by the temperature and the rate of heating and cooling of the wire rod or wire being patented. So far, heating up to the austenitizing temperature has been conducted in several-zone continuous gas-fired or electric furnaces. Recently, attempts have been made in a drawing mill to replace this type of furnace with fast induction heating, which should bring about an energy saving, as well as a reduced quantity of scale on the patented wire. This paper presents the analysis of the structure and mechanical properties of wires of high-carbon steel with a carbon content of 0.76%C after the patenting process using induction heating for different levels of the coil induction power.


1988 ◽  
Vol 110 (4) ◽  
pp. 319-324
Author(s):  
Akira Kato

The effect of laser welding on prevention of the fracture of cracked shafts of a high carbon steel are presented. Static tensile strength and rotary bending fatigue strength were obtained using shaft specimens of AISI W1 which were welded by a CO2 laser around a precrack. Since the welded region became extremely hard and brittle, both the strengths of laser-welded specimens were lower than those of non-welded specimens. However, the strengths were increased higher than those of non-welded specimens after tempering the specimens. It was found that when tempered at 600°C after laser welding, the rotary bending fatigue strength of specimens with a crack smaller than 12 mm rose similar to that of the base metal, and when tempered at 700° C, the static tensile strength of specimens with a crack smaller than 12mm rose similar to that of the base metal. Therefore, it was shown that the laser welding is very effective to prevent fracture of high carbon steels.


Sign in / Sign up

Export Citation Format

Share Document