scholarly journals Numerical and Experimental Study of Producing Two-Step Flanges by Extrusion with a Movable Sleeve

2017 ◽  
Vol 62 (2) ◽  
pp. 495-499 ◽  
Author(s):  
G. Winiarski ◽  
A. Gontarz

Abstract The paper presents a new metal forming process for producing two-step external flanges on hollow parts. With this method, the flange is extruded by a movable sleeve, which moves in the opposite direction to the punch. This reduces the phenomenon of buckling of the tube wall, which allows extruding flanges with relatively large volumes. The new method was applied to produce a two-step flange on the end of a tubular billet made of 6060 aluminum alloy. This cold metal forming process was designed based on numerical simulations and experimental tests. The effect of the basic technological parameters on metal flow was investigated and limitations of the process were identified. The experimental results confirmed the possibility of forming a two-step flange with a diameter that is approximately twice as big as the external diameter of the tubular billet.

2011 ◽  
Vol 491 ◽  
pp. 145-150 ◽  
Author(s):  
Marcelo Martins ◽  
Sérgio Tonini Button ◽  
José Divo Bressan

Hot extrusion is a metal forming process with a huge importance in the manufacturing of long metallic bars with complex shapes, and because of this, academics and industries are especially interested in better understanding how metal flows during the process. In order to have a reliable computational tool that can help to solve and to obtain material internal flow, experimental tests and numerical simulation with the finite element method were carried out to obtain results of the velocity fields generated in hot direct extrusion of aluminum billets (aluminum alloy 6351). The experimental results of the velocity field will be used to validate a computational code based on the finite volume method.


2021 ◽  
Vol 343 ◽  
pp. 04007
Author(s):  
Mihai Popp ◽  
Gabriela Rusu ◽  
Sever-Gabriel Racz ◽  
Valentin Oleksik

Single point incremental forming is one of the most intensely researched die-less manufacturing process. This process implies the usage of a CNC equipment or a serial robot which deforms a sheet metal with the help of a relatively simple tool that follows an imposed toolpath. As every cold metal forming process, besides the many given advantages it has also some drawbacks. One big drawback in comparison with other cold metal forming processes is the low accuracy of the deformed parts. The aim of this research is to investigate the sheet metal bending mechanism through finite element method analysis. The results shows that the shape of the retaining rings has a big influence over the final geometrical accuracy of the parts manufactured through single point incremental forming.


2014 ◽  
Vol 777 ◽  
pp. 58-64
Author(s):  
Johnpaul Woodhead ◽  
Julian D. Booker ◽  
Christopher E. Truman ◽  
Vadim Davydov

Nosing is a cold metal-forming process used in the manufacture of plain spherical bearings. This process ensures the outer bearing race conforms to the shape of the inner race (a ball), with a composite liner in-between to provide a low frictional moment. These bearings must be precision engineered due to the large forces and demanding environments they operate within in service. The manufacture of these bearings and related process settings is very much an experiential route, although increasingly Finite Element simulations are used to predict and characterise complex material behaviour. It is imperative the numerical nosing models are validated against experimental measurements due to uncertainties in material properties, process variables and part manufacture variations. In this paper, neutron diffraction is used to determine the residual stresses in a large nosed bearing. Measurements were made on the POLDI instrument at PSI, Switzerland. This paper compares the predicted stresses with measurement results, and draws conclusions concerning the validity and usability of the models.


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

In metal forming, an initially simple part—a billet or sheet blank, for example—is plastically deformed between tools (or dies) to obtain the desired final configuration. Thus, a simple part geometry is transformed into a complex one, in a process whereby the tools “store” the desired geometry and impart pressure on the deforming material through the tool-material interface. The physical phenomena constituting a forming operation are difficult to express with quantitative relationships. The metal flow, the friction at the tool-material interface, the heat generation and transfer during plastic flow, and the relationships between microstructure/properties and process conditions are difficult to predict and analyze. Often, in producing discrete parts, several forming operations (preforming) are required to transform the initial “simple” geometry into a “complex” geometry, without causing material failure or degrading material properties. Consequently, the most significant objective of any method of analysis is to assist the forming engineer in the design of forming and/or preforming sequences. For a given operation (preforming or finish-forming), such design essentially consists of (1) establishing the kinematic relationships (shape, velocities, strain-rates, strains) between the deformed and undeformed part, i.e., predicting metal flow; (2) establishing the limits of formability or producibility, i.e., determining whether it is possible to form the part without surface or internal defects; and (3) predicting the forces and stresses necessary to execute the forming operation so that tooling and equipment can be designed or selected. For the understanding and quantitative design and optimization of metal-forming operations it is useful (a) to consider a metal forming process as a system and (b) to classify these processes in a systematic way. A metal-forming system comprises all the input variables relating the billet or blank (geometry and material), the tooling (geometry and material), the conditions at the tool-material interface, the mechanics of plastic deformation, the equipment used, the characteristics of the final product, and finally the plant environment in which the process is being conducted. Such a system is illustrated in Fig. 2.1, using impression die forging as an example.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 764
Author(s):  
Jarosław Bartnicki ◽  
Yingxiang Xia ◽  
Xuedao Shu

The paper presents chosen aspects of the skew rolling process of hollow stepped products with the use of a skew rolling mill designed and manufactured at the Lublin University of Technology. This machine is characterized by the numerical control of spacing between the working rolls and the sequence of the gripper axial movement, which allows for the individual programming of the obtained shapes of parts such as stepped axles and shafts. The length of these zones and the values of possibly realizable cross-section reduction and obtained outlines are the subject of this research paper. The chosen results regarding the influence of the technological parameters used on the course of the process are shown in the present study. Numerical modelling using the finite element method in Simufact Forming, as well as the results of experimental tests performed in a skew rolling mill, were applied in the conducted research. The work takes into account the influence of cross-section reduction of the hollow parts and the feed rate per rotation on the metal flow mechanisms in the skew rolling process. The presented results concern the obtained dimensional deviations and changes in the wall thickness determining the proper choice of technological parameters for hollow parts formed by the skew rolling method. Knowledge about the cause of the occurrence of these limitations is very important for the development of this technology and the choice of the process parameters.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2125 ◽  
Author(s):  
Janusz Tomczak ◽  
Zbigniew Pater ◽  
Tomasz Bulzak

This paper presents selected numerical and experimental results of a skew rolling process for producing balls using helical tools. The study investigates the effect of the billet’s initial temperature on the quality of produced balls and the rolling process itself. In addition, the effect of billet diameter on the quality of produced balls is investigated. Experimental tests were performed using a helical rolling mill available at the Lublin University of Technology. The experiments consisted of rolling 40 mm diameter balls with the use of two helical tools. To determine optimal rolling parameters ensuring the highest quality of produced balls, numerical modelling was performed using the finite element method in the Forge software. The numerical analysis involved the determination of metal flow kinematics, temperature and damage criterion distributions, as well as the measurement of variations in the force parameters. The results demonstrate that the highest quality balls are produced from billet preheated to approximately 1000 °C.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

2000 ◽  
Vol 123 (4) ◽  
pp. 398-402 ◽  
Author(s):  
Sing C. Tang ◽  
Z. Cedric Xia ◽  
Feng Ren

It is well known in the literature that the isotropic hardening rule in plasticity is not realistic for handling plastic deformation in a simulation of a full sheet-metal forming process including springback. An anisotropic hardening rule proposed by Mroz is more realistic. For an accurate computation of the stress increment for a given strain increment by using Mroz’s rule, the conventional subinterval integration takes excessive computing time. This paper proposes the radial return method to compute such stress increment for saving computing time. Two numerical examples show the efficiency of the proposed method. Even for a sheet model with more than 10,000 thin shell elements, the radial return method takes only 40 percent of the overall computing time by the subinterval integration.


Sign in / Sign up

Export Citation Format

Share Document