Some uncertainty principles for diamond Lie groups

Author(s):  
Ali Baklouti ◽  
Dhoha Lahyani

AbstractSo far, the uncertainty principles for solvable non-exponential Lie groups have been treated only in few cases. The first author and Kaniuth produced an analogue of Hardy's theorem for a diamond Lie group, which is a semi-direct product of ℝ

Author(s):  
S. C. Bagchi ◽  
Swagato K. Ray

AbstractWe extend an uncertainty principle due to Cowling and Price to Euclidean spaces, Heisenberg groups and the Euclidean motion group of the plane. This uncertainty principle is a generalisation of a classical result due to Hardy. We also show that on the real line this uncertainty principle is almost equivalent to Hardy's theorem.


Author(s):  
Mohammed El Bachir Bekka

AbstractLet G be an exponential Lie group. We study primitive ideals (i.e. kernels of irreducible *-representations of L1(G)), with bounded approximate units (b.a.u.). We prove a result relating the existence of b.a.u. in certain primitive ideals with the geometry of the corresponding Kirillov orbits. This yields for a solvable group of class 2, a characterization of the primitive ideals with b.a.u.


2008 ◽  
Vol 78 (2) ◽  
pp. 301-316
Author(s):  
DETLEV POGUNTKE

AbstractA nine-dimensional exponential Lie group G and a linear form ℓ on the Lie algebra of G are presented such that for all Pukanszky polarizations 𝔭 at ℓ the canonically associated unitary representation ρ=ρ(ℓ,𝔭) of G has the property that ρ(ℒ1(G)) does not contain any nonzero operator given by a compactly supported kernel function. This example shows that one of Leptin’s results is wrong, and it cannot be repaired.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2009 ◽  
Vol 361 (12) ◽  
pp. 6283-6348 ◽  
Author(s):  
Didier Arnal ◽  
Bradley Currey ◽  
Bechir Dali

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Liu ◽  
Jianfeng Dong

Assume thatGis a stratified Lie group andQis the homogeneous dimension ofG. Let-Δbe the sub-Laplacian onGandW≢0a nonnegative potential belonging to certain reverse Hölder classBsfors≥Q/2. LetL=-Δ+Wbe a Schrödinger operator on the stratified Lie groupG. In this paper, we prove the boundedness of some integral operators related toL, such asL-1∇2,L-1W, andL-1(-Δ) on the spaceBMOL(G).


2013 ◽  
Vol 12 (08) ◽  
pp. 1350055
Author(s):  
SONIA L'INNOCENTE ◽  
FRANÇOISE POINT ◽  
CARLO TOFFALORI

Given a compact linear Lie group G, we form a natural expansion of the theory of the reals where G and the graph of a logarithm function on G live. We prove its effective model-completeness and decidability modulo a suitable variant of Schanuel's Conjecture.


2013 ◽  
Vol 10 (07) ◽  
pp. 1320011 ◽  
Author(s):  
FATMA KARAKUŞ ◽  
YUSUF YAYLI

In this study, Fermi–Walker derivative, Fermi–Walker parallelism, non-rotating frame, Fermi–Walker termed Darboux vector concepts are given for Lie groups in E4. First, we get any Frénet curve and any vector field along the Frénet curve in a Lie group. Then, the Fermi–Walker derivative is defined for the Lie group. Fermi–Walker derivative and Fermi–Walker parallelism are analyzed in Lie groups. Finally, the necessary conditions for Fermi–Walker parallelism are explained.


2007 ◽  
Vol 18 (07) ◽  
pp. 783-795 ◽  
Author(s):  
TARO YOSHINO

For a nilpotent Lie group G and its closed subgroup L, Lipsman [13] conjectured that the L-action on some homogeneous space of G is proper in the sense of Palais if and only if the action is free. Nasrin [14] proved this conjecture assuming that G is a 2-step nilpotent Lie group. However, Lipsman's conjecture fails for the 4-step nilpotent case. This paper gives an affirmative solution to Lipsman's conjecture for the 3-step nilpotent case.


Sign in / Sign up

Export Citation Format

Share Document