Aging and Neuroeconomics: Insights from Research on Neuromodulation of Reward-based Decision Making

2007 ◽  
Vol 29 (1) ◽  
Author(s):  
Shu-Chen Li ◽  
Guido Biele ◽  
Peter N. C. Mohr ◽  
Hauke R. Heekeren

Abstract‘Neuroeconomics’ can be broadly defined as the research of how the brain interacts with the environment to make decisions that are functional given individual and contextual constraints. Deciphering such brain-environment transactions requires mechanistic understandings of the neurobiological processes that implement value-dependent decision making. To this end, a common empirical approach is to investigate neural mechanisms of reward-based decision making. Flexible updating of choices and associated expected outcomes in ways that are adaptive for a given task (or a given set of tasks) at hand relies on dynamic neurochemical tuning of the brain’s functional circuitries involved in the representation of tasks, goals and reward prediction. Empirical evidence as well as computational theories indicate that various neurotransmitter systems (e.g., dopamine, norepinephrine, and serotonin) play important roles in reward-based decision making. In light of the apparent aging-related decline in various aspects of the dopaminergic system as well as the effects of neuromodulation on reward-related processes, this article focuses selectively on the literature that highlights the triadic relations between dopaminergic modulation, reward-based decision making, and aging. Directions for future research on aging and neuroeconomoics are discussed.

2021 ◽  
Author(s):  
Joseph Heffner ◽  
Jae-Young Son ◽  
Oriel FeldmanHall

People make decisions based on deviations from expected outcomes, known as prediction errors. Past work has focused on reward prediction errors, largely ignoring violations of expected emotional experiences—emotion prediction errors. We leverage a new method to measure real-time fluctuations in emotion as people decide to punish or forgive others. Across four studies (N=1,016), we reveal that emotion and reward prediction errors have distinguishable contributions to choice, such that emotion prediction errors exert the strongest impact during decision-making. We additionally find that a choice to punish or forgive can be decoded in less than a second from an evolving emotional response, suggesting emotions swiftly influence choice. Finally, individuals reporting significant levels of depression exhibit selective impairments in using emotion—but not reward—prediction errors. Evidence for emotion prediction errors potently guiding social behaviors challenge standard decision-making models that have focused solely on reward.


Author(s):  
Duygu Buğa

The purpose of this chapter is to explore the potential connection between neuroeconomics and the Central Language Hypothesis (CLH) which refers to the language placed within the subconscious mind of an individual. The CLH forwards that in the brains of bilingual and multilingual people, one language is more suppressive as it dominates reflexes, emotions, and senses. This central language (CL) is located at the centre of the limbic cortex of the brain. Therefore, when there is a stimulus on the limbic cortex (e.g., fear, anxiety, sadness), the brain produces the central language. The chapter begins with an Introduction followed by a Theoretical Framework. The next section discusses the neurolinguistic projection of the central language and includes the survey and the results used in this study. The Discussion section provides additional information regarding the questionnaire and the CLH, followed by Future Research Directions, Implications, and finally the Conclusion.


2008 ◽  
Vol 363 (1507) ◽  
pp. 3147-3158 ◽  
Author(s):  
Jane Stewart

Relapse, the resumption of drug taking after periods of abstinence, remains the major problem for the treatment of addiction. Even when drugs are unavailable for long periods or when users are successful in curbing their drug use for extended periods, individuals remain vulnerable to events that precipitate relapse. Behavioural studies in humans and laboratory animals show that drug-related stimuli, drugs themselves and stressors are powerful events for the precipitation of relapse. Molecular, neurochemical and anatomical studies have identified lasting neural changes that arise from mere exposure to drugs and other enduring changes that arise from learning about the relationship between drug-related stimuli and drug effects. Chronic drug exposure increases sensitivity of some systems of the brain to the effects of drugs and stressful events. These changes, combined with those underlying conditioning and learning, perpetuate vulnerability to drug-related stimuli. Circuits of the brain involved are those of the mesocorticolimbic dopaminergic system and its glutamatergic connections, and the corticotropin-releasing factor and noradrenergic systems of the limbic brain. This paper reviews advances in our understanding of how these systems mediate the effects of events that precipitate relapse and of how lasting changes in these systems can perpetuate vulnerability to relapse.


2009 ◽  
Vol 19 (1) ◽  
pp. 1-31 ◽  
Author(s):  
Rommel Salvador ◽  
Robert G. Folger

ABSTRACT:Neuroethics, the study of the cognitive and neural mechanisms underlying ethical decision-making, is a growing field of study. In this review, we identify and discuss four themes emerging from neuroethics research. First, ethical decision-making appears to be distinct from other types of decision-making processes. Second, ethical decision-making entails more than just conscious reasoning. Third, emotion plays a critical role in ethical decision-making, at least under certain circumstances. Lastly, normative approaches to morality have distinct, underlying neural mechanisms. On the basis of these themes, we draw implications for research in business ethics and the practice of ethics training.


2021 ◽  
Author(s):  
Tadaaki Nishioka ◽  
Tom Macpherson ◽  
Kosuke Hamaguchi ◽  
Takatoshi Hikida

To optimize decision making, animals need to execute not only a strategy to choose a good option but sometimes also one to avoid a bad option. A psychological study indicates that positive and negative information is processed in a different manner in the brain. The nucleus accumbens (NAc) contains two different types of neurons, dopamine D1 and D2 receptor-expressing neurons which are implicated in reward-based decision making and aversive learning. However, little is known about the neural mechanisms by which D1 or D2 receptor-expressing neurons in the NAc contribute to the execution of the strategy to choose a good option or one to avoid a bad option under decision making. Here, we have developed two novel visual discrimination tasks for mice to assess the strategy to choose a good option and one to avoid a bad option. By chemogenetically suppressing the subpopulation of the NAc neurons, we have shown that dopamine D2 receptor-expressing neurons in the NAc selectively contribute to the strategy to avoid a bad option under reward-based decision making. Furthermore, our optogenetic and calcium imaging experiments indicate that dopamine D2 receptor-expressing neurons are activated by error choices and the activation following an error plays an important role in optimizing the strategy in the next trial. Our findings suggest that the activation of D2 receptor-expressing neurons by error choices through learning enables animals to execute the appropriate strategy.


2017 ◽  
Author(s):  
Ernest Mas-Herrero ◽  
Guillaume Sescousse ◽  
Roshan Cools ◽  
Josep Marco-Pallarés

AbstractMost studies that have investigated the brain mechanisms underlying learning have focused on the ability to learn simple stimulus-response associations. However, in everyday life, outcomes are often obtained through complex behavioral patterns involving a series of actions. In such scenarios, parallel learning systems are important to reduce the complexity of the learning problem, as proposed in the framework of hierarchical reinforcement learning (HRL). One of the key features of HRL is the computation of pseudo-reward prediction errors (PRPEs) which allow the reinforcement of actions that led to a sub-goal before the final goal itself is achieved. Here we wanted to test the hypothesis that, despite not carrying any rewarding value per se, pseudo-rewards might generate a bias in choice behavior when reward contingencies are not well-known or uncertain. Second, we also hypothesized that this bias might be related to the strength of PRPE striatal representations. In order to test these ideas, we developed a novel decision-making paradigm to assess reward prediction errors (RPEs) and PRPEs in two studies (fMRI study: n = 20; behavioural study: n = 19). Our results show that overall participants developed a preference for the most pseudo-rewarding option throughout the task, even though it did not lead to more monetary rewards. fMRI analyses revealed that this preference was predicted by individual differences in the relative striatal sensitivity to PRPEs vs RPEs. Together, our results indicate that pseudo-rewards generate learning signals in the striatum and subsequently bias choice behavior despite their lack of association with actual reward.


2021 ◽  
Author(s):  
Nadine Dijkstra ◽  
Peter Kok ◽  
Stephen M Fleming

There is increasing evidence that imagination relies on similar neural mechanisms as externally triggered perception. This overlap presents a challenge for perceptual reality monitoring: deciding what is real and what is imagined. Here, we explore how perceptual reality monitoring might be implemented in the brain. We first describe sensory and cognitive factors that could dissociate imagery and perception and conclude that no single factor unambiguously signals whether an experience is internally or externally generated. We suggest that reality monitoring is implemented by higher-level cortical circuits that evaluate first-order sensory and cognitive factors to determine the source of sensory signals. According to this interpretation, perceptual reality monitoring shares core computations with metacognition. This multi-level architecture might explain several types of source confusion as well as dissociations between simply knowing whether something is real and actually experiencing it as real. We discuss avenues for future research to further our understanding of perceptual reality monitoring, an endeavor that has important implications for our understanding of clinical symptoms as well as general cognitive function.


2006 ◽  
Vol 18 (7) ◽  
pp. 1637-1677 ◽  
Author(s):  
Nathaniel D. Daw ◽  
Aaron C. Courville ◽  
David S. Touretzky

Although the responses of dopamine neurons in the primate midbrain are well characterized as carrying a temporal difference (TD) error signal for reward prediction, existing theories do not offer a credible account of how the brain keeps track of past sensory events that may be relevant to predicting future reward. Empirically, these shortcomings of previous theories are particularly evident in their account of experiments in which animals were exposed to variation in the timing of events. The original theories mispredicted the results of such experiments due to their use of a representational device called a tapped delay line. Here we propose that a richer understanding of history representation and a better account of these experiments can be given by considering TD algorithms for a formal setting that incorporates two features not originally considered in theories of the dopaminergic response: partial observability (a distinction between the animal's sensory experience and the true underlying state of the world) and semi-Markov dynamics (an explicit account of variation in the intervals between events). The new theory situates the dopaminergic system in a richer functional and anatomical context, since it assumes (in accord with recent computational theories of cortex) that problems of partial observability and stimulus history are solved in sensory cortex using statistical modeling and inference and that the TD system predicts reward using the results of this inference rather than raw sensory data. It also accounts for a range of experimental data, including the experiments involving programmed temporal variability and other previously unmodeled dopaminergic response phenomena, which we suggest are related to subjective noise in animals' interval timing. Finally, it offers new experimental predictions and a rich theoretical framework for designing future experiments.


2019 ◽  
Vol 26 (1) ◽  
pp. 87-99 ◽  
Author(s):  
Jeroen P. H. Verharen ◽  
Roger A. H. Adan ◽  
Louk J. M. J. Vanderschuren

Processing rewarding and aversive signals lies at the core of many adaptive behaviors, including value-based decision making. The brain circuits processing these signals are widespread and include the prefrontal cortex, amygdala and striatum, and their dopaminergic innervation. In this review, we integrate historic findings on the behavioral and neural mechanisms of value-based decision making with recent, groundbreaking work in this area. On the basis of this integrated view, we discuss a neuroeconomic framework of value-based decision making, use this to explain the motivation to pursue rewards and how motivation relates to the costs and benefits associated with different courses of action. As such, we consider substance addiction and overeating as states of altered value-based decision making, in which the expectation of reward chronically outweighs the costs associated with substance use and food consumption, respectively. Together, this review aims to provide a concise and accessible overview of important literature on the neural mechanisms of behavioral adaptation to reward and aversion and how these mediate motivated behaviors.


Sports ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 65
Author(s):  
Michael Ashford ◽  
Andrew Abraham ◽  
Jamie Poolton

Three perspectives were taken to explain decision-making within team sports (information processing, recognition primed decision-making, and ecological dynamics perspectives), resulting in conceptual tension and practical confusion. The aim of this paper was to interrogate empirical evidence to (1) understand the process of decision-making within team sports and (2) capture the characteristics of decision-making expertise in a team sport context. Nine electronic databases (SPORTDiscus, PsycINFO, PsycArticles, PsycTests, PubMed, SAGE journals online, Web of Knowledge, Academic Search Complete, and Web of Science) were searched until the final return in March 2021. Fifty-three articles satisfied the inclusion criteria, were analysed thematically, and synthesised using a narrative approach. Findings indicate that the relative absence or presence of mental representation within the decision-making process depends on factors, including complexity, typicality, time available, and contextual priors available in the game situation. We recommend that future research integrate concepts and methodologies prevalent within each perspective to better understand decision-making within team sports before providing implications for practitioners.


Sign in / Sign up

Export Citation Format

Share Document